

《HCIP – Datacom Core 实验手册》目录

01、配置 OSPF 多区域实验组网	- 003
02、OSPF 高级配置实验组网	- 009
03、配置 VRRP 实验组网	- 015
04、配置静默接口实验组网	- 018
05、配置通过 filter-policy 控制路由实验组网	- 021
06、配置协议优先级实验组网(一)	- 025
07、配置协议优先级实验组网(二)	- 029
08、 配置 IS-IS 单区域实验组网	- 033
09、 配置 IS-IS 多区域实验组网	- 035
10、配置 IS-IS 路由验证及聚合实验组网	- 039
11、配置 IS-IS 路由渗透实验组网	- 044
12、配置 RIPng 实验组网	- 049
13、配置 OSPFv3 实验组网	- 052
14、 配置 IPv6 各类地址实验组网	- 055
15、配置 IBGP 与 EBGP 会话实验组网	- 060
16、配置通过 AS-Path 属性移除私有 AS 号实验组网 -	- 068
17、配置 BGP 原子汇总实验组网	- 076
18、配置 BGP 汇总子实验组网	- 085
19、 配置 BGP 本地优先级实验组网	- 094
20、 配置 BGP 多出口鉴别实验组网	- 103

21、配置 BGP 优先级值实验组网	112
22、配置 BGP filter-policy 实验组网	119
23、 配置 BGP ip ip-prefix 实验组网	125
24、 配置 BGP 双向重发布实验组网	131
25、配置 RSTP 实验组网	135
26、配置 STP 边缘端口实验组网	138
27、 配置 STP 根保护实验组网	141
28、配置 STP BPDU 保护实验组网	144
29、配置 STP 环路保护实验组网	147
30、配置 MSTP 实验组网	150

-、配置 OSPF 多区域实验组网

二、实验目的:

通过 OSPF 多区域和双向重发布的配置, 令 Client A 能够与 Client B 正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

东方瑞通 图 23

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

interface Loopback0 #创建环回接口 0

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路

由器 ID

area 1 #创建 OSPF 区域 1 network 10.1.1.0 0.0.0.255 #通告其直连网段 network 192.168.1.0 0.0.0.255 #通告其直连网段

RTB:

system-view sysname RTB interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 10.1.1.2 24 interface Loopback0 ip address 2.2.2.2 32 ospf 1 router-id 2.2.2.2

东方瑞通 图 23

area 1

network 10.1.1.0 0.0.0.255

area 0

network 20.1.1.0 0.0.0.255

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

network 30.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

ospf 1 router-id 4.4.4.4

area 0

network 30.1.1.0 0.0.0.255

area 2

network 40.1.1.0 0.0.0.255

RTE:

system-view sysname RTE interface G0/0/0 ip address 50.1.1.1 24 interface G0/0/1 ip address 40.1.1.2 24 interface Loopback0 ip address 5.5.5.5 32 ospf 1 router-id 5.5.5.5

东方瑞通 图 23

import-route rip 1 #将 RIP1 的路由条目重发布进

OSPF1 的进程中

area 2

network 40.1.1.0 0.0.0.255

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 50.0.0.0 #通告其直连的网段

undo summary #关闭自动汇总

import-route ospf 1 #将 OSPF1 的路由条目重发布进 RIP1

的进程中

RTF:

system-view sysname RTF interface G0/0/0 ip address 172.16.1.1 24 interface G0/0/1 ip address 50.1.1.2 24 rip 1 version 2 network 50.0.00 network 172.16.0.0

undo summary

二、OSPF 高级配置实验组网

二、实验目的:

通过 OSPF 多区域、虚链路以及双向重发布的配置, 令全网全通

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 192.168.1.0 #通告其直连的网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 10.1.1.1 24

interface G0/0/1

ip address 192.168.1.2 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2 #进入 OSPF 进程 1,并指定其路

由器 ID

import-route rip 1 #将 RIP1 的路由条目重发布进

OSPF1 的进程中

area 1 #创建 OSPF 区域 1

network 10.1.1.0 0.0.0.255 #通告其直连网段

rip 1

version 2

network 192.168.1.0

undo summary

import-route ospf 1 #将 OSPF1 的路由条目重发布进 RIP1

的进程中

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

area 1

network 10.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

ospf 1 router-id 4.4.4.4

area 0

network 20.1.1.0 0.0.0.255

area 2

network 30.1.1.0 0.0.0.255

vlink-peer 5.5.5.5 #与对端设备 5.5.5.5 在区域 2 中配置虚

链路

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 5.5.5.5 32

ospf 1 router-id 5.5.5.5

area 2

network 30.1.1.0 0.0.0.255

东方瑞通 图 27

vlink-peer 4.4.4.4

area 3

network 40.1.1.0 0.0.0.255

RTF:

system-view

sysname RTF

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface Loopback0

ip address 6.6.6.6 32

ospf 1 router-id 6.6.6.6

import-route rip 1

area 3

network 40.1.1.0 0.0.0.255

rip 1

version 2

network 172.16.0.0

undo summary

import-route ospf 1

RTG:

system-view

sysname RTG

interface G0/0/1

ip address 172.16.1.2 24

rip 1

version 2

network 172.16.0.0

undo summary

三、配置 VRRP 实验组网

二、实验目的:

令 Client A 访问 HTTP Server, 默认从 RTB 到达, 之后 down 掉 RTB 的 G0/0/0 接口, 使 RTC 自动接替转发工作, 并且在 RTB 的 E0/0/0 接口正常工作之后从 RTC 抢夺转发权, 同时 RTB、 RTC 都实现端口跟踪

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

东方瑞通 图学习

ip address 172.16.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 172.16.0.0 #通告其直连的网段

network 10.0.0.0 #通告其直连的网段

network 20.0.0.0 #通告其直连的网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.2 24

interface G0/0/1

ip address 192.168.1.1 24

vrrp vrid 47 virtual-ip 192.168.1.254 #创建 VRRP 组,

指定组号与虚拟 IP 地址

vrrp vrid 47 priority 200 #配置当前路由器的 VRRP 优

先级

vrrp vrid 47 track interface G0/0/0 reduced 60 #配置

VRRP 端口跟踪,并指定在被跟踪的接口失效时,令当前

VRRP 路由器的优先级降低 60

rip 1

version 2

network 192.168.1.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 192.168.1.2 24

vrrp vrid 47 virtual-ip 192.168.1.254

vrrp vrid 47 priority 150

vrrp vrid 47 track interface G0/0/1 reduced 60

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 192.168.1.0

network 10.0.0.0

undo summary

四、配置静默接口实验组网

一、实验拓扑:

二、实验目的:

4 台路由器运行 RIPv2,通过将 RTA 的 G0/0/2 配置为静默接口,令 RTA 不再向 RTD 通告 RIP 路由信息,但从 RTD 接收路由信息

三、实验步骤:

RTA:

system-view #进入系统视图模式

东方瑞通 图学习

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

ip address 30.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

network 20.0.0.0 #通告其直连网段

network 30.0.0.0 #通告其直连网段

silent-interface G0/0/0 #将 G0/0/0 配置为静默接口

undo summary #关闭自动汇总

RTB:

system-view sysname RTB interface G0/0/0 ip address 10.1.1.2 24 rip 1 version 2

network 10.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

rip 1

version 2

network 20.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

undo summary

五、配置通过 filter-policy 控制路由实

验组网

一、实验拓扑:

其过滤掉 RTA 通告过来的路由中的网络 10.1.1.0/24

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

ip address 30.1.1.1 24 #配置 IP 地址及子网掩码

interface Loopback0 #创建环回接口 0

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路 由器 ID

area 0 #创建 OSPF 区域 1 network 10.1.1.0 0.0.0.255 #通告其直连网段 network 20.1.1.0 0.0.0.255 #通告其直连网段 network 30.1.1.0 0.0.0.255 #通告其直连网段

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 10.1.1.2 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2

area 0

network 10.1.1.0 0.0.0.255

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

acl 2001 #配置基本 ACL

rule deny source 10.1.1.0 0.0.0.255 #拒绝来自

10.1.1.0/24 的路由条目

rule permit source any

#允许来自其它任意网段的路由条

目

ospf 1 router-id 4.4.4.4

filter-policy 2001 import

#使用过滤策略调用 ACL

2001,并应用在入方向上

area 0

network 30.1.1.0 0.0.0.255

六、配置协议优先级实验组网 (一)

一、实验拓扑:

二、实验目的:

5 台路由器运行 RIPv2,通过更改协议优先级,令 RTC 学到的 所有路由条目的协议优先级值均变为 98

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 10.0.0.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

undo summary

preference 98 #配置协议优先级为 98

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

network 40.0.0.0

undo summary

RTE:

system-view

sysname RTE

interface G0/0/1

ip address 40.1.1.2 24

rip 1

version 2

network 40.0.0.0

undo summary

七、配置协议优先级实验组网(二)

一、实验拓扑:

二、实验目的:

5 台路由器运行 RIPv2,通过更改协议优先级,令 RTC 从 RTD 学到的 RIP 的路由条目的协议优先级值变为 98,而从 RTB 学 到的 RIP 的路由条目的协议优先级值保持不变

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

东方瑞通 图学习

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 10.0.0.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

network 40.0.0.0

undo summary

RTE:

system-view

sysname RTE

interface G0/0/1

ip address 40.1.1.2 24

rip 1

version 2

network 40.0.0.0

undo summary

八、配置 IS-IS 单区域实验组网

·、实验拓扑:

通过 IS-IS 单区域的配置, 令 RTA 与 RTC 可相互访问

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 **#进入相应的接口**

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

isis 1 #开启 IS-IS 路由功能

is-level level-1 #配置 IS-IS 路由器类型为层 1 路由

network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/1

ip address 20.1.1.2 24

isis enable 1

isis 1

is-level level-1

network-entity 01.0030.0300.3003.00

九、配置 IS-IS 多区域实验组网

二、实验目的:

通过 IS-IS 多区域的配置, 令全网全通, 并令 RTA 到达 RTD 的 200.1.1.0/24 网络优选经过 RTB

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

isis cost 10 #配置 IS-IS 接口的链路开销值

interface G0/0/1 #进入相应的接口

东方瑞通 图 23

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码 isis enable 1 #在指定接口上启用 IS-IS isis cost 20 #配置 IS-IS 接口的链路开销值 isis 1 #开启 IS-IS 路由功能 is-level level-1 #配置 IS-IS 路由器类型为层 1 路由 network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

isis enable 1

interface G0/0/1

ip address 40.1.1.1 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

RTD:

system-view sysname RTD interface G0/0/0 ip address 40.1.1.2 24 isis enable 1 interface G0/0/1 ip address 30.1.1.2 24 isis enable 1

interface Loopback0

ip address 200.1.1.1 24

isis enable 1

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

测试:

在 RTA 上 ping RTD 的 200.1.1.1:

[RTA]ping 200.1.1.1
PING 200.1.1.1: 56 data bytes, press CTRL C to break
Reply from 200.1.1.1: bytes=56 Sequence=1 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=2 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=3 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=4 ttl=254 time=20 ms
Reply from 200.1.1.1: bytes=56 Sequence=5 ttl=254 time=30 ms
200.1.1.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 20/28/30 ms
[10 M R]

在 RTA 上检测到达网络 200.1.1.1 所使用的路径:

[RTA]tracert 200.1.1.1
traceroute to 200.1.1.1(200.1.1.1), max hops: 30 ,packet length: 40,press CTRL
_C to break
1 10.1.1.2 20 ms 20 ms 20 ms
2 30.1.1.2 30 ms 10 ms 20 ms
[RTA]

十、配置 IS-IS 路由验证及聚合实验组

XX

二、实验目的:

在 4 台路由器上配置认证,同时在 RTC 上配置路由聚合,令 RTD 只学习聚合后的路由 192.168.0.0/16

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

Designer : Yiqian Hu

39 https://huawei.easthome.com/

东方瑞通[®] 图 第3

isis authentication-mode md5 cipher *huawei* #配置邻 居关系验证方式及验证密码 interface Loopback0 #创建并进入环回接口 0 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 isis enable 1 #在指定接口上启用 IS-IS interface Loopback1 #创建并进入环回接口 1 ip address 192.168.2.1 24 #配置 IP 地址及子网掩码 #在指定接口上启用 IS-IS isis enable 1 interface Loopback2 #创建并进入环回接口 2 ip address 192.168.3.1 24 #配置 IP 地址及子网掩码 #在指定接口上启用 IS-IS isis enable 1 #开启 IS-IS 路由功能 isis 1 is-level level-1 #配置 IS-IS 路由器类型为层 1 路由 network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称 area-authentication-mode md5 cipher atnet #配置区 域验证方式及验证密码

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-1

network-entity 01.0020.0200.2002.00

area-authentication-mode md5 cipher atnet

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 10.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

interface G0/0/1

ip address 20.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

interface G0/0/2

ip address 30.1.1.1 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

area-authentication-mode md5 cipher atnet

domain-authentication-mode md5 cipher hcip #配置路

由域验证方式及验证密码

summary 192.168.0.0 255.255.0.0 level-2 #配置仅对引入

到层 2 的路由进行聚合

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

domain-authentication-mode md5 cipher hcip

测试:

查看 RTD 的 IS-IS 路由表,发现只有聚合路由条目:

	ISIS(1)	Level-2	Forwarding Tab	ole	
IPV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
192.168.0.0/16	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
10.1.1.0/24	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
20.1.1.0/24	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
30.1.1.0/24	10	NULL	GE0/0/0	Direct	D/-/L/-
Flags: D-Direct,	A-Added t	O URT, L	-Advertised in	LSPs, S-IGP S	Shortcut,

十一、配置 IS-IS 路由渗透实验组网

实验拓扑: RTB Area 1 G0/0/1 G0/0/0 30.1.1.0/24 Area 2 10.1.1.0/24 G0/0/0 G0/0/1 $\langle R \rangle$ RTD RTA G0/0/0 G0/0/ 200.1.1.0/24 40.1.1.0/24 20.1.1.0/24 G0/0/1 G0/0/0 RTC

二、实验目的:

配置 RTB 与 RTC, 令其将从层 2 学习到的路由条目渗透给层 1 的路由器

三、实验步骤

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

interface G0/0/1 #进入相应的接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

44 https://huawei.easthome.com/

isis enable 1 #在指定接口上启用 IS-IS

isis 1 #开启 IS-IS 路由功能

is-level level-1 #配置 IS-IS 路由器类型为层 1 路由

network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网

络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

isis enable 1

interface G0/0/1

ip address 40.1.1.1 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.2 24

isis enable 1

interface G0/0/1

ip address 30.1.1.2 24

isis enable 1

interface Loopback0

ip address 200.1.1.1 24

isis enable 1

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

测试:

完成上述配置后,在 RTA 上 ping RTD 的 200.1.1.1:

[RTA]ping 200.1.1.1
PING 200.1.1.1: 56 data bytes, press CTRL_C to break
Reply from 200.1.1.1: bytes=56 Sequence=1 ttl=254 time=20 ms
Reply from 200.1.1.1: bytes=56 Sequence=2 ttl=254 time=40 ms
Reply from 200.1.1.1: bytes=56 Sequence=3 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=4 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=5 ttl=254 time=30 ms
200.1.1.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 20/30/40 ms

再在 RTA 上查看 IS-IS 的路由表:

[RTA]display	isis route	9				
		Route	informat	ion for ISIS(1	_)	
		ISIS(1)) Level-1	Forwarding Ta	able	
IPV4 Destina	tion In	ntCost	ExtCost	ExitInterface	e NextHop	Flags
0.0.0.0/0	1(NULL	GE0/0/1 GE0/0/0	20.1.1.2 10.1.1.2	A/-/-/-
10.1.1.0/24	10		NULL	GE0/0/0	Direct	D/-/L/-
20.1.1.0/24	10		NULL	GE0/0/1	Direct	D/-/L/-
30.1.1.0/24	20		NULL	GE0/0/0	10.1.1.2	A/-/-/-
40.1.1.0/24	20		NULL	GE0/0/1	20.1.1.2	A/-/-/-
Flags: 1	D-Direct, A	A-Added t	to URT, L	-Advertised in	LSPs, S-IGP	Shortcut,
			U-Up/Dow	n Bit Set		
[RTA]				- Anno I da con		

发现 RTA 的 IS-IS 路由表中并没有关于 200.1.1.0 网络的路由

条目

东方瑞通 图 27

此时,需要在 RTB 及 RTC 上做如下配置:

RTB:

isis 1

import-route isis level-2 into level-1

RTC:

isis 1

import-route isis level-2 into level-1

再次查看	RTA 的	IS-IS	路由表
------	-------	-------	-----

	ISIS(1)	Level-1	Forwarding Tab	le 	
PV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
.0.0/0	10	NULL	GE0/0/1	20.1.1.2	A/-/-/-
0.1.1.0/24	10	NIIT.T.	GE0/0/0	Direct	$D/-/T_{1}/-$
0.1.1.0/24	10	NULL	GE0/0/1	Direct	D/-/L/-
30.1.1.0/24	20	NULL	GE0/0/0	10.1.1.2	A/-/-/-
0.1.1.0/24	20	NULL	GE0/0/1	20.1.1.2	A/-/-/-
200.1.1.0/24	20	NULL	GE0/0/0	10.1.1.2	A/-/-/U
			GE0/0/1	20 1 1 2	

十二、配置 RIPng 实验组网

-、实验拓扑:

二、实验目的:

通过 RIPng 的配置, 令 RTA 可以学习到 RTC 的路由条目,并与 之通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

ipv6 #开启设备的 IPv6 功能

ripng #开启并进入 RIPng 进程

interface G0/0/0 #进入相应接口

ipv6 enable #在接口下开启 IPv6 功能

ipv6 address FE80::1 link-local #配置该接口的链路本地

地址

ipv6 address 1::1/64 #配置该接口的通讯地址

ripng 1 enable #在该接口上开启 RIPng 进程

RTB:

system-view

sysname RTB

ipv6

ripng

interface G0/0/1

ipv6 enable

ipv6 address FE80::2 link-local

ipv6 address 2::2/64

ripng 1 enable

interface G0/0/0

ipv6 enable

ipv6 address FE80::3 link-local

ipv6 address 3::3/64

ripng 1 enable

RTC:

system-view

sysname RTC

ipv6

ripng

interface G0/0/1

ipv6 enable

ipv6 address FE80::4 link-local

ipv6 address 4::4/64

ripng 1 enable

十三、配置 OSPFv3 实验组网

-、实验拓扑:

二、实验目的:

通过 OSPFv3 的配置, 令 RTA 可以学习到 RTC 的路由条目,并 与之通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface Loopback0 #创建并进入环回接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ipv6 #开启设备的 IPv6 功能

ospfv3 #开启并进入 OSPFv3 进程

router-id 1.1.1.1 #配置 OSPF 路由器 ID

interface G0/0/0 #进入相应接口

ipv6 enable #在接口下开启 IPv6 功能

ipv6 address FE80::1 link-local #配置该接口的链路本地

52 https://huawei.easthome.com/

地址

ipv6 address 1::1/64 #配置该接口的通讯地址

ospfv3 1 area 0.0.0.0 #在该接口上开启 OSPFv3 进程,并

指定其所属区域

RTB:

system-view

sysname RTB

interface Loopback0

ip address 2.2.2.2 32

ipv6

ospfv3

router-id 2.2.2.2

interface G0/0/1

ipv6 enable

ipv6 address FE80::2 link-local

ipv6 address 2::2/64

ospfv3 1 area 0.0.0.0

interface G0/0/0

ipv6 enable

ipv6 address FE80::3 link-local

ipv6 address 3::3/64

ospfv3 1 area 0.0.0.0

RTC:

system-view

sysname RTC

interface Loopback0

ip address 3.3.3.3 32

ipv6

ospfv3

router-id 3.3.3.3

interface G0/0/1

ipv6 enable

ipv6 address FE80::4 link-local

ipv6 address 4::4/64

ospfv3 1 area 0.0.0.0

十四、配置 IPv6 各类地址实验组网

、实验拓扑:
 RTB
 元状态配置
 G0/0/0
 2001:DB8:12::1/64
 G0/0/0
 RTA
 G0/0/1
 2001:DB8:13::1/64

二、实验目的:

RTA 的 G0/0/0 与 G0/0/1 接口采用手工方式配置 IPv6 地址; RTB 的 G0/0/0 接口通过无状态地址自动配置的方式获取 IPv6 地址; RTC 的 G0/0/0 接口通过 DHCPv6 的方式获取 IPv6 地址

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

ipv6 #开启设备的 IPv6 功能

Designer : Yiqian Hu

55 https://huawei.easthome.com/

东方瑞通 图 23

dhcp enable #开启 DHCP 功能 dhcpv6 pool easthome #创建 DHCPv6 地址池并命名 address prefix 2001:DB8:13::/64 #指定分配的网段及掩码 excluded-address 2001:DB8:13::1 #排除不分配的地址 interface G0/0/0 #进入相应的接口 ipv6 enable #在接口下开启 IPv6 功能 ipv6 address auto link-local #令接口自动生成链路本地 地址 ipv6 address 2001:DB8:12::1 64 / #配置该接口的通讯地址 undo ipv6 nd ra halt #开启发布 RA 报文的功能 interface G0/0/1 ipv6 enable ipv6 address auto link-local ipv6 address 2001:DB8:13::1 64 dhcpv6 server easthome RTB: system-view sysname RTB ipv6 interface G0/0/0

ipv6 enable

ipv6 address auto link-local

ipv6 address auto global

#令该接口通过无状态地址自动

配置的方式获取 IPv6 地址

RTC:

system-view

sysname RTC

ipv6

dhcp enable

interface G0/0/0

ipv6 enable

ipv6 address auto link-local

ipv6 address auto dhcp #令该接口通过 DHCPv6 的方式获

取 IPv6 地址

测试:

在 RTB 上查看其接口的 IPv6 地址

[RTB]display ipv6 interface g0/0/0
GigabitEthernet0/0/0 current state : UP
IPv6 protocol current state : UP
IPv6 is enabled, link-local address is FE80::2E0:FCFF:FE13:36C5
Global unicast address(es):
2001:DB8:12:0:2E0:FCFF:FE13:36C5,
subnet is 2001:DB8:12::/64 [SLAAC 1970-01-01 00:05:25 2592000S]
Joined group address(es):
FF02::1:FF13:36C5
FF02::2
FF02::1
MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND retransmit interval is 1000 milliseconds
Hosts use stateless autoconfig for addresses
[RTB]

再在 RTB 上查看其接口 G0/0/0 的 MAC 地址,确认其 IPv6 地

址是使用其自身的接口 MAC 地址自动生成的

[RTB]display interface g0/0/	0			
GigabitEthernet0/0/0 current	st	ate : UP		
Line protocol current state	: D	OWN		
Description:HUAWEI, AR Series	s,	GigabitEthernet0/	0/0 Interface	
Route Port, The Maximum Trans	mit	Unit is 1500		
Internet protocol processing		disabled		
IP Sending Frames' Format is	PK	TFMT ETHNT 2, Har	dware address is	00e0-fc13-36c5
Last physical up time : 202	21-	06-10 12:14:25 UT	C-08:00	
Last physical down time : 202	21-	06-10 12:14:16 UT	C-08:00	
Current system time: 2021-06-	-10	12:25:21-08:00		
Port Mode: FORCE COPPER				
Speed : 1000, Loopback: NON	E			
Duplex: FULL, Negotiation: 1	ENA	BLE		
Mdi : AUTO				
Last 300 seconds input rate (0 b	its/sec, 0 packet	s/sec	
Last 300 seconds output rate	0	bits/sec, 0 packe	ts/sec	
Input peak rate 176 bits/sec	, Re	cord time: 2021-0	6-10 12:18:28	
Output peak rate 232 bits/see	c,R	ecord time: 2021-	06-10 12:19:38	
New York Market Control Constant Press Control				
Input: 8 packets, 816 bytes				
Unicast:	Ο,	Multicast:		
Broadcast:	Ο,	Jumbo:	0	
Discard:	Ο,	Total Error:	0	
CRC:	0,	Giants:	0	
More				

在 RTC 上查看其接口的 IPv6 地址

[RTC]display dhcpv6 client
GigabitEthernet0/0/0 is in stateful DHCPv6 client mode.
State is BOUND.
Preferred server DUID : 0003000100E0FC1B6A14
Reachable via address : FE80::2E0:FCFF:FE1B:6A15
IA NA IA ID 0x00000031 T1 43200 T2 69120
Obtained : 2021-06-10 12:20:02
Renews : 2021-06-11 00:20:02
Rebinds : 2021-06-11 07:32:02
Address : 2001:DB8:13::2
Lifetime valid 172800 seconds, preferred 86400 seconds
Expires at 2021-06-12 12:20:02(172265 seconds left)

[RTC]

十五、配置 IBGP 与 EBGP 会话实验组

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

Designer : Yiqian Hu

60 https://huawei.easthome.com/

东方瑞通 图 2 2 3

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 bgp 65001 #开启 BGP 路由功能,并配置其 AS 号 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic **#关闭自动汇**总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

#告知对等体,自己为其访问

EBGP 的下一跳路由器

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4.4 255.255.255.255 40.1.1.1

测试:

分别在 RTA 与 RTE 上查看路由表:

[RTA]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib		
Routing Tables: Pub Destinatio	olic ons : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
1.1.1.1/32 2.2.2.2/32	Direct Static	0 60	0 0	D RD	127.0.0.1 10.1.1.2	LoopBack0 GigabitEthernet
10.1.1.0/24	Direct	0		D	10.1.1.1	GigabitEthernet
10.1.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
10.1.1.255/32 0/0/0	Direct	0	0	D	127.0.0.1	GigabitEthernet
20.1.1.0/24 0/0/0	EBGP	255		RD	2.2.2.2	GigabitEthernet
30.1.1.0/24 0/0/0	EBGP	255		RD	2.2.2.2	GigabitEthernet
40.1.1.0/24 0/0/0	EBGP	255	0	RD	2.2.2.2	GigabitEthernet
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0
127 255 255 255/32	Direct	0	0	D	127.0.0.1	InLoopBack0
172.16.1.0/24 0/0/0	EBGP	255	0	RD	2.2.2.2	GigabitEthernet
192.168.1.0/24 0/0/1	Direct	0	0	D	192.168.1.1	GigabitEthernet
192.168.1.1/32 0/0/1	Direct	0	0	D	127.0.0.1	GigabitEthernet
192.168.1.255/32 0/0/1	Direct	0		D	127.0.0.1	GigabitEthernet
255.255.255.255/32	Direct		0	D	127.0.0.1	InLoopBack0
[RTA]						

Pouting Tables . Duk	lic					
Destinatio	ons : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
4.4.4.4/32	Static	60	0	RD	40.1.1.1	GigabitEthernet
0/0/1						
5.5.5.5/32	Direct	0	0	D	127.0.0.1	LoopBack0
10.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1	777 477	0.5.5				
20.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
0/0/I 30 1 1 0/24	FRCD	255		DD	1 1 1 1	CicchitEthorpot
0/0/1	EDGF	200	0	KD	4.4.4.4	GIGADICECHEINEC
40.1.1.0/24	Direct	0	0	D	40 1 1 2	GigabitEthernet
0/0/1	DIICOL				10.1.1.2	orgabitelenernet
40.1.1.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1						
40.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1						
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct		0	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct			D	127.0.0.1	InLoopBack0
172.16.1.0/24	Direct	0	0	D	172.16.1.1	GigabitEthernet
0/0/0						
172.16.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
172.16.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
192.168.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1						
255.255.255.255/32	Direct		0	D	127.0.0.1	InLoopBack0

十六、配置通过 AS-Path 属性移除私 有 AS 号实验组网

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯, 之后在 RTD 上配置 AS-Path 属性, 令其在将网络 192.168.1.0/24 发送给 RTE 时, 移除其所属的私有 AS 号码

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

68 https://huawei.easthome.com/

东方瑞通[®] 图 第3

interface G0/0/1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由(对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7
东方瑞通 图学习

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

peer 5.5.5.5 public-as-only #移除私有 AS 号码, 仅保留

公有 AS 号码

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4 255.255.255.255 40.1.1.1

测试:

在 RTD 上未应用 public-as-only 参数时, RTE 的 BGP 表项为:

[RTE]	dis bgp routing-ta	able				
BGP Stat	Local router ID is tus codes: * - val: h - his Origin	s 5.5.5.5 id, > - best, tory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S - Stale	
Tota	al Number of Route: Network	3: 6 NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.1.0	4.4.4.4			0	1 65001i
[RTE]						

在 RTD 上应用 public-as-only 参数后, RTE 的 BGP 表项为:

[RTE]	dis bgp routing-ta	able				
BGP Stai	Local router ID is tus codes: * - val: h - his Origin	s 5.5.5.5 id, > - best, tory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S - Stale	
Tota	al Number of Routes	в: б				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogr
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.1.0	4.4.4.4			0	1i
RTE						

十七、配置 BGP 原子汇总实验组网

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯, 之后在 RTD 上配置原子汇总,将其网络 192.168.1.0/24 汇总为 192.168.0.0/16 通告给 RTE, 而 192.168.1.0/24 的明晰路由则不再通告

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由(对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

#进行路由

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

aggregate 192.168.0.0 16 detail-suppressed

汇总,并拒绝明晰路由

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4.4 255.255.255.255 40.1.1.1

测试:

在 RTD 上没有配置原子汇总时, 查看 RTE 的路由表:

[RTE]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib		
Routing Tables: Pub Destinatio	lic ns : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
4.4.4.4/32	Static	60	0	RD	40.1.1.1	GigabitEthernet
5.5.5.5/32	Direct		0	D	127.0.0.1	LoopBack0
10.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
20.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
0/0/1	1201	100				049004020004000
30.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1	Dimont			D	10 1 1 2	CirchitEthornot
40.1.1.0/24	Direct	U	0	D	40.1.1.2	GigabitEthernet
40.1.1.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1						
40.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
127 0 0 0/8	Direct	0	0	D	127 0 0 1	InLoopBack0
127.0.0.1/32	Direct	0	0	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0
172.16.1.0/24	Direct	0	0	D	172.16.1.1	GigabitEthernet
0/0/0						
172.16.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
172.16.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
192.168.1.0/24 0/0/1	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
255.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0

在 RTD 上配置了原子汇总后, 查看 RTE 的路由表:

[RTE]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib		
Routing Tables: Pub Destinatio	lic ns : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
4.4.4.4/32	Static	60	0	RD	40.1.1.1	GigabitEthernet
5.5.5.5/32	Direct		0	D	127.0.0.1	LoopBack0
10.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
20.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
30.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
40.1.1.0/24	Direct	0		D	40.1.1.2	GigabitEthernet
40.1.1.2/32	Direct	0		D	127.0.0.1	GigabitEthernet
0/0/1 40.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
127 0 0 0/0	Diment				107 0 0 1	To To on Do olo
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBackU
107 055 055 055 (20	Direct	0	0	D	127.0.0.1	InLoopBacku
172 16 1 0/24	Direct	0	0	D	127.0.0.1	CigobitEthorpot
0/0/0	Direct	0	0	D	1/2.10.1.1	GigabitEthernet
172.16.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0	DIICOC				127101011	ergantenernet
172.16.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
192.168.0.0/16	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
255.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0

[RTE]

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯, 之后在 RTD 上配置汇总子, 将其网络 192.168.1.0/24 汇总为 192.168.0.0/16 通告给 RTE, 并在 RTE 上查看网络 192.168.0.0/16 的明细信息

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由(对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

aggregate 192.168.0.0 16 detail-suppressed as-set

#

在原子汇总的基础上配置汇总子

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4 255.255.255.255 40.1.1.1

测试:

在 RTD 上仅配置了原子汇总,而没有配置汇总子时,查看 RTE 的 BGP 表:

[RTE]	dis bgp routing-ta	able				
BGP Stat	Local router ID is tus codes: * - vali h - hist Origin :	s 5.5.5.5 .d, > - best, .ory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, .ncomplete	S - Stale	
Tota	al Number of Routes	s: 6				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.0.0/16	4.4.4.4			0	1i
ושתים						

在 RTE 的 BGP 表中具体查看网络 192.168.0.0 的明细内容:

[RTE]display bgp routing-table 192.168.0.0 BGP local router ID : 5.5.5.5 Local AS number : 7 Paths: 1 available, 1 best, 1 select BGP routing table entry information of 192.168.0.0/16: From: 4.4.4.4 (4.4.4.4) Route Duration: 00h03m29s Relay IP Nexthop: 40.1.1.1 Relay IP Out-Interface: GigabitEthernet0/0/1 Original nexthop: 4.4.4.4 Qos information : 0x0 AS-path 1, origin igp, pref-val 0, valid, external, best, select, active, pre 2 55 Aggregator: AS 1, Aggregator ID 4.4.4.4, Atomic-aggregate Not advertised to any peer yet

在 RTD 上配置完原子汇总, 再配置上汇总子后, 查看 RTE 的

51

BGP 表:

[RTE]	dis bgp routing-ta	ble				
BGP Stai	Local router ID is tus codes: * - vali h - hist Origin :	5.5.5.5 d, > - best, ory, i - int i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, a ncomplete	S – Stale	
Tota	al Number of Routes					
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.0.0/16	4.4.4.4			0	1 65001i
[RTE]						

在 RTE 的 BGP 表中具体查看网络 192.168.0.0 的明细内容:

[RTE]display bgp routing-table 192.168.0.0
BGP local router ID : 5.5.5.5
Local AS number : 7
Paths: 1 available, 1 best, 1 select
BGP routing table entry information of 192.168.0.0/16:
From: 4.4.4.4 (4.4.4.4)
Route Duration: 00h00m08s
Relay IP Nexthop: 40.1.1.1
Relay IP Out-Interface: GigabitEthernet0/0/1
Original nexthop: 4.4.4.4
Qos information : 0x0
AS-path 1 65001, origin igp, pref-val 0, valid, external, best, select, active,
pre 255
Aggregator: AS 1, Aggregator ID 4.4.4.4, Atomic-aggregate
Not advertised to any peer yet

RTE

十九、配置 BGP 本地优先级实验组网

二、实验目的:

通过 BGP 本地优先级的配置, 令 Client A 访问 HTTP Server 经 过 RTB, Client A 访问 FTP Server 经过 RTC

```
三、实验步骤:
```

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface LoopBack0 #进入相应接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 interface LoopBack1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack2 #进入相应接口 ip address 172.16.1.1 24 #配置 IP 地址及子网掩码 bgp 65001 #开启 BGP 路由功能,并配置其 AS 号 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 peer 3.3.3.3 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 3.3.3.3 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 3.3.3.3 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 24 #通告自己的网段及子网掩码 network 172.16.1.0 24 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总

95 https://huawei.easthome.com/

ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址) ip route-static 3.3.3.3 32 20.1.1.2 #配置静态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

acl number 2001 #创建基本 ACL 2001

rule 5 permit source 192.168.1.0 0.0.0.255 #匹配源网

段,并定义为允许转发

acl number 2002 #创建基本 ACL 2002

rule 5 permit source 172.16.1.0 0.0.0.255 #匹配源网段,

并定义为允许转发

route-policy atnet permit node 10 #创建路由策略,并定

义为允许策略,序列号为10

if-match acl 2001 #匹配 ACL 2001

apply local-preference 200 #若能成功匹配,则配置其本

地优先级为 200

route-policy atnet permit node 20 #创建路由策略,并定

义为允许策略,序列号为20

if-match acl 2002 #匹配 ACL 2002

apply local-preference 100

#若能成功匹配,则配置其本

地优先级为 100

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

peer 4.4.4.4 route-policy atnet export # 在指向对等体

4.4.4 的外出方向上,调用名为 atnet 的路由策略

rip 1

version 2

network 2.0.0.0

network 30.0.0.0

undo summary

ip route-static 1.1.1.1 32 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

interface G0/0/1

ip address 40.1.1.1 24

interface LoopBack0

ip address 3.3.3.3 32

acl number 2001

rule 5 permit source 192.168.1.0 0.0.0.255

acl number 2002

rule 5 permit source 172.16.1.0 0.0.0.255

route-policy atnet permit node 10

if-match acl 2001

apply local-preference 100

route-policy atnet permit node 20

if-match acl 2002

apply local-preference 200

bgp 1

router-id 3.3.3.3

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

peer 2.2.2.2 next-hop-local

peer 4.4.4.4 next-hop-local

peer 4.4.4.4 route-policy atnet export

rip 1

version 2

network 3.0.0.0

network 40.0.0.0

undo summary

ip route-static 1.1.1.1 32 20.1.1.1

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.2 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

interface LoopBack1

ip address 100.1.1.1 24

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

network 40.0.0.0

undo summary

测试:

在 RTD 上查看其 BGP 表:

[RTD]	dis bgp routing-ta	able				
BGP 1 Stati	Local router ID i: us codes: * - val: h - his Origin	s 4.4.4.4 id, > - best, tory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S – Stale	
Tota	l Number of Route:	в: 7				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	30.1.1.0/24	0.0.0.0	0		0	
*>	40.1.1.0/24	0.0.0.0	0		0	
*>	100.1.1.0/24	0.0.0.0	0		0	i
*>i	172.16.1.0/24	3.3.3.3	0	200	0	65001i
* i		2.2.2.2	0	100	0	65001i
*>i	192.168.1.0	2.2.2.2	0	200	0	65001i
* i		3.3.3.3	0	100	0	65001i
[RTD]					0.0000	

在 RTD 上从 100.1.1.1 去 ping 192.168.1.1, 观察其转发路径:

[RTD]tracert -a 100.1.1.1 192.168.1.1 traceroute to 192.168.1.1(192.168.1.1), max hops: 30 ,packet length: 40,press CTRL_C to break 1 30.1.1.1 50 ms 50 ms 40 ms 2 10.1.1.1 70 ms 60 ms 80 ms [RTD]

在 RTD 上从 100.1.1.1 去 ping 172.16.1.1, 观察其转发路径:

[RTD]tracert -a	100.1.1.1	172.16.1.1	
traceroute to RL_C to break	172.16.1.1	(172.16.1.1), max hops: 30 ,packet length: 40,press CI	
1 40.1.1.1 80 m	ns 50 ms	40 ms	
2 20.1.1.1 70 m [RTD]	ms 60 ms	40 ms	

二十、配置 BGP 多出口鉴别实验组网

二、实验目的:

通过 BGP 多出口鉴别的配置, 令 Client A 访问 HTTP Server 经 过 RTB, Client A 访问 FTP Server 经过 RTC

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface LoopBack0 #进入相应接口

东方瑞通 图学习

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 interface LoopBack1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack2 #进入相应接口 ip address 172.16.1.1 24 #配置 IP 地址及子网掩码 acl number 2001 #创建基本 ACL 2001 rule 5 permit source 192.168.1.0 0.0.0.255 #匹配源网 段,并定义为允许转发 acl number 2002 #创建基本 ACL 2002 rule 5 permit source 172.16.1.0 0.0.0.255 #匹配源网段, 并定义为允许转发 route-policy atnet permit node 10 #创建路由策略,并定 义为允许策略,序列号为10 if-match acl 2001 #匹配 ACL 2001 apply cost 200 #若能成功匹配,则配置其 MED 值为 200 route-policy atnet permit node 20 #创建路由策略,并定 义为允许策略, 序列号为 20 if-match acl 2002 #匹配 ACL 2002 apply cost 100 #若能成功匹配,则配置其 MED 值为 100 route-policy huawei permit node 10 #创建路由策略, 并定义为允许策略,序列号为10 if-match acl 2001 #匹配 ACL 2001

东方瑞通 图学习

apply cost 100 #若能成功匹配,则配置其 MED 值为 100
route-policy huawei permit node 20 #创建路由策略,
并定义为允许策略,序列号为 20
if-match acl 2002 #匹配 ACL 2002
apply cost 200 #若能成功匹配,则配置其 MED 值为 200
bgp 65001 #开启 BGP 路由功能,并配置其 AS 号
router-id 1.1.1.1 #配置设备的 BGP 路由器 ID
peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID,以及
远程自治系统号码
peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为
EBGP 关系,并指出到对等体所跨越的跳数
peer 2.2.2.2 connect-interface LoopBack0 #指定自身
与对等体之间用哪个接口来承载更新
peer 2.2.2.2 route-policy huawei export #在指向对等体
2.2.2.2 的外出方向上,调用名为 huawei 的路由策略
peer 3.3.3.3 as-number 1 #指定对等体的路由器 ID, 以及
远程自治系统号码
peer 3.3.3.3 ebgp-max-hop 2 #指定自身与对等体为
EBGP 关系,并指出到对等体所跨越的跳数
peer 3.3.3.3 connect-interface LoopBack0 #指定自身
与对等体之间用哪个接口来承载更新
peer 3.3.3.3 route-policy atnet export # 在指向对等体

105 https://huawei.easthome.com/

3.3.3 的外出方向上,调用名为 atnet 的路由策略
network 192.168.1.0 24 #通告自己的网段及子网掩码
network 172.16.1.0 24 #通告自己的网段及子网掩码
undo summary automatic #关闭自动汇总
ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等
体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)
ip route-static 3.3.3.3 32 20.1.1.2 #配置静态路由 (对等
体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

- peer 1.1.1.1 connect-interface LoopBack0
- peer 3.3.3.3 as-number 1
- peer 3.3.3.3 connect-interface LoopBack0
- peer 4.4.4.4 as-number 1
- peer 4.4.4.4 connect-interface LoopBack0
- network 10.1.1.0 255.255.255.0
- network 30.1.1.0 255.255.255.0
- network 40.1.1.0 255.255.255.0
- network 100.1.1.0 255.255.255.0
- undo summary automatic
- peer 3.3.3.3 next-hop-local
- peer 4.4.4.4 next-hop-local
- rip 1
- version 2
- network 2.0.0.0
- network 30.0.0.0
- undo summary
- ip route-static 1.1.1.1 32 10.1.1.1

RTC:

- system-view
- sysname RTC
- Designer : Yiqian Hu

interface G0/0/0

ip address 20.1.1.2 24

interface G0/0/1

ip address 40.1.1.1 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

peer 2.2.2.2 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 3.0.0.0

network 40.0.0.0

undo summary

ip route-static 1.1.1.1 32 20.1.1.1

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.2 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

interface LoopBack1

ip address 100.1.1.1 24

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

network 40.0.0.0

undo summary

测试:

在 RTD 上查看其 BGP 表:

[RTD]	dis bgp routing-ta	able					
<pre>BGP Local router ID is 4.4.4.4 Status codes: * - valid, > - best, d - damped,</pre>							
Tota	l Number of Routes	s: 7					
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn	
*>	30.1.1.0/24	0.0.0.0	0		0		
*>	40.1.1.0/24	0.0.0.0	0		0		
*>	100.1.1.0/24	0.0.0.0	0		0	i	
*>i	172.16.1.0/24	3.3.3.3	0	200	0	65001i	
* i		2.2.2.2	0	100	0	65001i	
*>i	192.168.1.0	2.2.2.2	0	200	0	65001i	
* i		3.3.3.3	0	100	0	65001i	
[RTD]					0.0200		

在 RTD 上从 100.1.1.1 去 ping 192.168.1.1, 观察其转发路径:

[RTD]tracert -a 100.1.1.1 192.168.1.1 traceroute to 192.168.1.1(192.168.1.1), max hops: 30 ,packet length: 40,press CTRL_C to break 1 30.1.1.1 50 ms 50 ms 40 ms 2 10.1.1.1 70 ms 60 ms 80 ms [RTD]

在 RTD 上从 100.1.1.1 去 ping 172.16.1.1,观察其转发路径:

[RTD]tracert -	a 10	0.1.1.1	172.16.1.1					
traceroute to RL_C to break	17	2.16.1.	1(172.16.1.1),	, max hops:	30 ,packe	t length:	40,press	CT
1 40.1.1.1 80	ms	50 ms	40 ms					
2 20.1.1.1 70 [RTD]	ms	60 ms	40 ms					

二十一、配置 BGP 优先级值实验组

XX

二、实验目的:

通过 BGP 优先级值的配置, 令 RTA 访问 FTP Server 经过 RTD 到达,其余路径根据协议自主选择

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

东方瑞通 图学习

ip address 40.1.1.2 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

acl number 2001 #创建基本 ACL 2001

rule 5 permit source 192.168.1.0 0.0.0.255 #匹配源网

段,并定义为允许转发

route-policy atnet permit node 10 #创建路由策略,并定

义为允许策略,序列号为10

if-match acl 2001 #匹配 ACL 2001

apply preferred-value 100 #若能成功匹配,则配置其优先 级值为 100

route-policy atnet permit node 20 #创建路由策略,并定 义为允许策略,序列号为 20

bgp 100 #开启 BGP 路由功能, 并配置其 AS 号

router-id 1.1.1.1 #配置设备的 BGP 路由器 ID

peer 2.2.2.2 as-number 200 #指定对等体的路由器 ID,

以及远程自治系统号码

peer 2.2.2.2 ebgp-max-hop 2 # 指定自身与对等体为

EBGP 关系,并指出到对等体所跨越的跳数

peer 2.2.2.2 connect-interface LoopBack0 #指定自身

与对等体之间用哪个接口来承载更新

peer 4.4.4.4 as-number 400 #指定对等体的路由器 ID,

113 https://huawei.easthome.com/

以及远程自治系统号码

peer 4.4.4.4 ebgp-max-hop 2 # 指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 4.4.4.4 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 peer 4.4.4.4 route-policy atnet import # 在指向对等体 4.4.4.4 的进入方向上,调用名为 atnet 的路由策略 network 10.1.1.0 24 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址) ip route-static 4.4.4.4 32 40.1.1.1 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB: system-view sysname RTB interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 10.1.1.2 24 interface LoopBack0

ip address 2.2.2.2 32

bgp 200

router-id 2.2.2.2

peer 1.1.1.1 as-number 100

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 300

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

undo summary automatic

ip route-static 1.1.1.1 32 10.1.1.1

ip route-static 3.3.3.3 32 20.1.1.2

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

东方瑞通 图 23

ip address 3.3.3.3 32

interface LoopBack1

ip address 192.168.1.1 24

bgp 300

router-id 3.3.3.3

peer 2.2.2.2 as-number 200

peer 2.2.2.2 ebgp-max-hop 2

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 400

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 30.1.1.0 255.255.255.0

network 192.168.1.0 255.255.255.0

undo summary automatic

ip route-static 2.2.2.2 32 20.1.1.1

ip route-static 4.4.4.4 32 30.1.1.2

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 400

router-id 4.4.4.4

peer 3.3.3.3 as-number 300

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

peer 1.1.1.1 as-number 100

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

network 40.1.1.0 255.255.255.0

undo summary automatic

ip route-static 3.3.3.3 32 30.1.1.1

ip route-static 1.1.1.1 32 40.1.1.2

测试:

在 RTA 上查看 BGP 表项,确定其访问网络 192.168.1.0 的下一 跳为 4.4.4.4, 目经过 4.4.4.4 的优先级值为 100

[RTA]	dis bgp routing-	table				
BGP Stat	Local router ID cus codes: * - va h - hi Origin	is 1.1.1.1 lid, > - best, story, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S - Stale	
Tota	al Number of Rout	es: 7				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	0.0.0.0	0		0	
*>	20.1.1.0/24	2.2.2.2	0		0	200i
*>	30.1.1.0/24	2.2.2.2			0	200 300i
		4.4.4.4			0	400 300i
*>	40.1.1.0/24	4.4.4.4	0		0	400i
*>	192.168.1.0	4.4.4.4			100	400 300i
*		2.2.2.2			0	200 300i
[RTA]						

二十二、配置 BGP filter-policy 实验 组网

二、实验目的:

4 台路由器按图中所示配置 BGP 协议, 令其可以彼此通讯, 之 后在 RTB 上配置 filter-policy, 防止 RTB 将网络 192.168.1.0/24 通告至 RTA

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

东方瑞通 图 23

#配置 IP 地址及子网掩码 ip address 10.1.1.1 24 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 bgp 65001 #开启 BGP 路由功能,并配置其 AS 号 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由(对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view sysname RTB interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

acl number 2001 #创建基本 ACL 2001

rule 5 deny source 192.168.1.0 0.0.0.255 #匹配源网段,

并定义为拒绝转发

rule 10 permit source 0.0.0.0 255.255.255.255 #匹配源

网段,并定义为允许所有

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 1.1.1.1 filter-policy *2001* export #在指向 1.1.1.1 的 对等体关系上配置过滤策略,调用 ACL 2001,并指定为外出方 向

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 10.1.1.0 255.255.255.0

network 20.1.1.0 255.255.255.0

undo summary automatic

ip route-static 1.1.1.1 32 10.1.1.1

rip 1

version 2

network 20.0.0.0

network 2.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 7

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

undo summary automatic

ip route-static 4.4.4.4 32 30.1.1.2

rip 1

version 2

network 20.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

interface LoopBack1

ip address 192.168.1.1 24

bgp 7

router-id 4.4.4.4

peer 3.3.3.3 as-number 1

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

network 192.168.1.0 255.255.255.0

undo summary automatic

ip route-static 3.3.3.3 32 30.1.1.1

二十三、配置 BGP ip ip-prefix 实验 组网

二、实验目的:

4 台路由器按图中所示配置 BGP 协议, 令其可以彼此通讯, 之 后在 RTB 上配置 ip ip-prefix, 防止 RTB 将网络 192.168.1.0/24 通告至 RTA, 但允许 RTA 学习网络 192.168.10.32/27 的路由条 目

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

Designer : Yiqian Hu

125 https://huawei.easthome.com/

东方瑞通 图 23

interface G0/0/0 #进入相应接口 ip address 10.1.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 undo summary automatic **#关闭自动汇**总 ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

ip ip-prefix 1 deny 192.0.0.0 8 less-equal 24 # 定义前缀

列表, 拒绝以 192 开头, 且掩码长度在 8 位至 24 位的网络

ip ip-prefix *1* permit 192.0.0.0 8 greater-equal 25 # 定 义前缀列表, 允许以 192 开头, 且掩码长度在 25 位及以上的网 络

ip ip-prefix 1 permit 20.0.0.0 8 le 24 #定义前缀列表, 允许以 20 开头, 且掩码长度在 8 位至 24 位的网络 ip ip-prefix 1 permit 30.0.0.0 8 le 24 #定义前缀列表, 允许以 30 开头, 且掩码长度在 8 位至 24 位的网络 bgp 1 router-id 2.2.2.2 peer 1.1.1.1 as-number 65001 peer 1.1.1.1 ebgp-max-hop 2 peer 1.1.1.1 connect-interface LoopBack0 peer 1.1.1.1 ip-prefix 1 export #在指向 1.1.1.1 的对等 体关系上配置前缀列表 1, 并指定为外出方向

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 10.1.1.0 255.255.255.0

network 20.1.1.0 255.255.255.0

undo summary automatic

ip route-static 1.1.1.1 32 10.1.1.1

rip 1

version 2

network 20.0.0.0

network 2.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 7

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

undo summary automatic

ip route-static 4.4.4.4 32 30.1.1.2

rip 1

version 2

network 20.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view sysname RTD interface G0/0/1 ip address 30.1.1.2 24 interface LoopBack0 ip address 4.4.4.4 32 interface LoopBack1 ip address 192.168.1.1 24

interface LoopBack2

ip address 192.168.10.33 27

bgp 7

router-id 4.4.4.4

peer 3.3.3.3 as-number 1

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

network 192.168.1.0 255.255.255.0

network 192.168.10.32 255.255.255.224

undo summary automatic

ip route-static 3.3.3.3 32 30.1.1.1

二十四、配置 BGP 双向重发布实验组

二、实验目的:

RTA 与 RTB 运行 OSPF 路由选择协议, RTB 与 RTC 运行 BGP 路由选择协议, 在 RTB 上配置双向重发布,最终令 Client A 与 Client B 能够正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

东方瑞通 图 23

interface Loopback0 #创建环回接口 0 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路 由器 ID area 0 #创建 OSPF 区域 0 network 10.1.1.0 0.0.0.255 #通告其直连网段 network 192.168.1.0 0.0.0.255 #通告其直连网段

system-view

- ---

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.1 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2

import-route direct cost 1 #以 COST 值 1 的形式将直连

路由注入进 OSPF 路由协议

import-route bgp permit-ibgp cost 1 #以 COST 值 1 的 形式将 BGP 路由注入进 OSPF 路由协议,同时允许将 IBGP 路

由也注入进 OSPF 路由协议中

area 0

network 10.1.1.0 0.0.0.255

bgp 1 #开启 BGP 路由功能,并配置其 AS 号

router-id 2.2.2.2 #配置设备的 BGP 路由器 ID

peer 3.3.3.3 as-number 1 #指定对等体的路由器 ID, 以及

远程自治系统号码

peer 3.3.3.3 connect-interface LoopBack0 #指定自身

与对等体之间用哪个接口来承载更新

network 20.1.1.0 24 #通告其直连的网段

undo summary automatic #关闭自动汇总

import-route ospf 1 med 1 #将 OSPF 1 的路由条目以

MED 值 1 的方式注入进 BGP 路由协议

ip route-static 3.3.3.3 32 20.1.1.2 #配置静态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTC:

system-view sysname RTC interface G0/0/0 ip address 172.16.1.1 24 interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 172.16.1.0 255.255.255.0

undo summary automatic

ip route-static 2.2.2.2 32 20.1.1.1

二十五、配置 RSTP 实验组网

-、 实验拓扑: SWA E0/0/1 Root E0/0/2 RSTP E0/0/1 E0/0/1 SWB E0/0/1 E0/0/1 E0/0/1 E0/0/1 E0/0/1 SWB E0/0/1 SWC 二、 实验目的:

将 3 台交换机的生成树模式配置为 RSTP, 同时将 SWA 配置成 为根网桥;通过生成树的选举, 令 SWC 的 E0/0/2 端口被阻塞 掉;在其它主链路失效时,通过 RSTP 的帮助,令 SWC 的 E0/0/2 端口能够尽快恢复

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

stp priority 8192 #将 SWA 的 STP 优先级配置为 8192

Designer : Yiqian Hu

135 https://huawei.easthome.com/

东方瑞通 图 23

interface E0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

interface E0/0/2 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

SWB:

system-view sysname SWB stp mode rstp stp priority 24576 interface E0/0/1 port link-type trunk port trunk allow-pass vlan all interface E0/0/2 port link-type trunk port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

测试:

在 SWC 上查看生成树的端口角色与状态

二十六、配置 STP 边缘端口实验组网

二、实验目的:

将 SWA 配置为根网桥,将 SWC 的端口 E0/0/3 配置为边缘端口,令该端口在与终端主机相连时,立即进入转发状态

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

stp priority 8192 #将 SWA 的 STP 优先级配置为 8192

interface E0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

138 https://huawei.easthome.com/

VLAN 的信息

interface E0/0/2 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

SWB:

system-view

sysname SWB

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

stp edged-port enable

#在端口下开启边缘端口功能

二十七、配置 STP 根保护实验组网

一、实验拓扑:

二、实验目的:

将 SWA 配置为根网桥, SWD 通过端口 E0/0/1 与 SWC 的 E0/0/3 相连,由于 SWD 的网桥优先级相较于 SWA 更低(4096), 因此 SWD 会抢占 SWA 的根网桥状态;为防止上述事件发生, 需要在 SWC 上开启根防护,以阻止 SWD 成为新的根网桥

三、实验步骤:

SWA:

system-view #进入系统视图模式

东方瑞通 图 23

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

interface G0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

interface G0/0/2 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

stp priority 8192 #将 SWA 的 STP 优先级配置为 8192

SWB:

system-view

sysname SWB

stp mode rstp

interface G0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface G0/0/2

port link-type trunk

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

stp root-protection #在端口下开启根防护功能

SWD:

system-view sysname SWD stp mode rstp stp priority 4096 interface E0/0/1 port link-type trunk port trunk allow-pass vlan all

二十八、配置 STP BPDU 保护实验组

二、实验目的:

将 SWA 配置为根网桥, SWC 的 E0/0/3 端口连接终端主机 PC-A,在 SWC 上配置 BPDU 保护,以防止该端口错误的连接其它 网络设备 (如:交换机等)后接收到 BPDU,导致其产生临时环路,从而增加整体网络的计算工作量,并可能引起网络震荡

三、实验步骤:

SWA:
东方瑞通 图 3

system-view #进入系统视图模式

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

stp priority 4096 #将 SWA 的 STP 优先级配置为 4096

interface G0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

interface G0/0/2 #进入相应的端口 port link-type trunk #将端口配置为中继模式 port trunk allow-pass vlan all #允许该中继端口传递所有 VLAN 的信息

SWB:

system-view sysname SWB stp mode rstp interface G0/0/1 port link-type trunk port trunk allow-pass vlan all interface G0/0/2 port link-type trunk

Designer : Yiqian Hu

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

stp bpdu-protection #开启 BPDU 保护机制

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

二十九、配置 STP 环路保护实验组网

二、实验目的:

将 SWA 配置为根网桥,当 SWA 的端口 E0/0/2 由于链路拥塞 或单向链路故障,导致 SWC 不能收到 SWA 发送的 BPDU 报文, 因此 SWC 将重新选择根端口;最初的根端口将变更为指定端口, 而阻塞端口则将进入转发状态,这将导致环路发生,因此需要在 SWC 的端口 E0/0/1 上开启环路保护机制,以防止上述事件发 生

三、实验步骤:

SWA:

system-view #进入系统视图模式

东方瑞通 图学习

sysname SWA #给设备命名 stp mode rstp #将 STP 的工作模式配置为 RSTP stp priority 4096 #将 SWA 的 STP 优先级配置为 4096 interface E0/0/1 #进入相应的端口 port link-type trunk #将端口配置为中继模式 port trunk allow-pass vlan all #允许该中继端口传递所有 VLAN 的信息 #进入相应的端口 interface E0/0/2 port link-type trunk #将端口配置为中继模式 port trunk allow-pass vlan all #允许该中继端口传递所有 VLAN 的信息

SWB: system-view sysname SWB stp mode rstp interface E0/0/1 port link-type trunk port trunk allow-pass vlan all interface E0/0/2 port link-type trunk port trunk allow-pass vlan all

Designer : Yiqian Hu

148 https://huawei.easthome.com/

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

stp loop-protection #在端口下开启环路保护机制

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

三十、配置 MSTP 实验组网

一、实验拓扑:

二、实验目的:

通过 MSTP 的配置, 令 SWB 成为 VLAN 1 – 10 的主根网桥, 成为 VLAN 11 – 20 的备根网桥; 同时令 SWC 成为 VLAN 11 – 20 的主根网桥, 成为 VLAN 1 – 10 的备根网桥

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

vlan batch 2 to 20 #创建 VLAN 2 到 20

东方瑞通 图学习

stp mode mstp #将 STP 的工作模式配置为 MSTP						
stp region-configuration #进入 STP 范围配置模式						
region-name <i>easthome</i> #配置该范围的名字						
revision-level 0 #配置该范围的版本						
instance 1 vlan 1 to 10 #将 VLAN 1 到 10 映射到实例 1						
instance 2 vlan 11 to 20 #将 VLAN 11 到 20 映射到实						
例 2						
active region-configuration #将范围配置开启						
interface E0/0/1 <mark>#进入相应的端口</mark>						
port link-type trunk #将端口配置为中继模式						
port trunk allow-pass vlan all #允许该中继端口传递所有						
VLAN 的信息						
interface E0/0/2 #进入相应的端口						
port link-type trunk #将端口配置为中继模式						
port trunk allow-pass vlan all #允许该中继端口传递所有						
VLAN 的信息						
SWB:						
system-view						

sysname SWB

vlan batch 2 to 20

stp mode mstp

Designer : Yiqian Hu

#设置该网桥为实例

#设置该网桥为实例 2 的

的主

stp region-configuration

region-name *easthome*

revision-level O

instance 1 vlan 1 to 10

instance 2 vlan 11 to 20

active region-configuration

stp instance 1 root primary

根网桥

stp instance 2 root secondary

备根网桥

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

stp edged-port enable #将该接口配置为边缘模式

port link-type access #将端口的链路类型配置为接入模

式

port default vlan 10 #将该端口加入进 VLAN 10

SWC:

system-view

sysname SWC

vlan 2 to 20

stp mode mstp

stp region-configuration

region-name *easthome*

revision-level O

instance 1 vlan 1 to 10

instance 2 vlan 11 to 20

active region-configuration

stp instance 1 root secondary

stp instance 2 root primary

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

stp edged-port enable

port link-type access

Designer : Yiqian Hu

port default vlan 20

测试:

在 SWB 上查看生成树中端口的角色与状态

MSTID	Port	Role	STP State	Protection
0	Ethernet0/0/1	DESI	FORWARDING	NONE
0	Ethernet0/0/2	DESI	FORWARDING	NONE
0	Ethernet0/0/3	DESI	FORWARDING	NONE
1	Ethernet0/0/1	DESI	FORWARDING	NONE
1	Ethernet0/0/2	DESI	FORWARDING	NONE
1	Ethernet0/0/3	DESI	FORWARDING	NONE
2	Ethernet0/0/1	ROOT	FORWARDING	NONE
2	Ethernet0/0/2	DESI	LEARNING	NONE
[SWB]				

在 SWC 上查看生成树中端口的角色与状态

[SWC]di	splay stp brief			
MSTID	Port	Role	STP State	Protection
0	Ethernet0/0/1	DESI	FORWARDING	NONE
0	Ethernet0/0/2	ROOT	FORWARDING	NONE
0	Ethernet0/0/3	DESI	FORWARDING	NONE
1	Ethernet0/0/1	DESI	FORWARDING	NONE
1	Ethernet0/0/2	ROOT	FORWARDING	NONE
2	Ethernet0/0/1	DESI	FORWARDING	NONE
2	Ethernet0/0/2	DESI	FORWARDING	NONE
2	Ethernet0/0/3	DESI	FORWARDING	NONE
[SWC]				

