

《HCIP – Datacom Core 实验手册》目录

01、配置OSPF多区域实验组网	004
02、OSPF 高级配置实验组网	010
03、配置 VRRP 实验组网	016
04、配置静默接口实验组网	019
05、配置通过 filter-policy 控制路由实验组网	022
06、配置协议优先级实验组网(一)	026
07、配置协议优先级实验组网(二)	030
08、 配置 IS-IS 单区域实验组网	034
09、 配置 IS-IS 多区域实验组网	036
10、配置 IS-IS 路由验证及聚合实验组网	040
11、配置 IS-IS 路由渗透实验组网	045
12、配置 RIPng 实验组网	050
13、配置 OSPFv3 实验组网	053
14、 配置 IPv6 各类地址实验组网	056
15、配置 IBGP 与 EBGP 会话实验组网	061
16、配置通过 AS-Path 属性移除私有 AS 号实验组网	069
17、配置 BGP 原子汇总实验组网	077
18、配置 BGP 汇总子实验组网	086
19、 配置 BGP 本地优先级实验组网	095
20、 配置 BGP 多出口鉴别实验组网	104

21、配置 BGP 优先级值实验组网	113
22、配置 BGP filter-policy 实验组网	120
23、配置 BGP ip ip-prefix 实验组网	126
24、 配置 BGP 双向重发布实验组网	132
25、配置 RSTP 实验组网	136
26、配置 STP 边缘端口实验组网	139
27、 配置 STP 根保护实验组网	142
28、配置 STP BPDU 保护实验组网	145
29、配置 STP 环路保护实验组网	148
30、配置 MSTP 实验组网	151
31、配置三层交换实验组网	156
32、 配置 DHCP 接口地址池实验组网	158
33、 配置 DHCP 全局地址池实验组网	160
34、配置 DHCP 中继代理实验组网	164
35、配置 DHCP Snooping 实验组网	170
36、配置端口安全实验组网	173
37、配置二层隔离三层互通的端口隔离实验组网	177
38、 配置二层三层均隔离的端口隔离实验组网	183
39、配置 MUX VLAN 实验组网	189
40、配置 BFD 与 OSPF 联动实验组网	199
41、配置 BFD 与 VRRP 联动实验组网	201
42、配置 BFD 与静态路由联动实验组网	207

43、配置 BFD 与 BGP 联动实验组网	213
44、配置 BFD 单臂回声实验组网	217
45、配置端口镜像实验组网	219
46、配置组播综合实验组网	223
47、配置 IKE 方式的 IPSec VPN 实验组网	230
48、 配置手动方式的 IPSec VPN 实验组网	234
49、 配置 GRE VPN 实验组网 (一)	238
50、 配置 GRE VPN 实验组网 (二)	241
51、 配置 GRE over IPSec VPN 实验组网	245
52、配置 L2TP VPN 实验组网	251
53、 配置 MBGP MPLS VPN 实验组网	260

-、配置 OSPF 多区域实验组网

二、实验目的:

通过 OSPF 多区域和双向重发布的配置, 令 Client A 能够与 Client B 正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

东方瑞通 图 23

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

interface Loopback0 #创建环回接口 0

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路

由器 ID

area 1 #创建 OSPF 区域 1 network 10.1.1.0 0.0.0.255 #通告其直连网段 network 192.168.1.0 0.0.0.255 #通告其直连网段

RTB:

system-view sysname RTB interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 10.1.1.2 24 interface Loopback0 ip address 2.2.2.2 32 ospf 1 router-id 2.2.2.2

东方瑞通 图 3

area 1

network 10.1.1.0 0.0.0.255

area 0

network 20.1.1.0 0.0.0.255

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

network 30.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

ospf 1 router-id 4.4.4.4

area 0

network 30.1.1.0 0.0.0.255

area 2

network 40.1.1.0 0.0.0.255

RTE:

system-view sysname RTE interface G0/0/0 ip address 50.1.1.1 24 interface G0/0/1 ip address 40.1.1.2 24 interface Loopback0 ip address 5.5.5.5 32

ospf 1 router-id 5.5.5.5

东方瑞通 图学习

import-route rip 1 #将 RIP1 的路由条目重发布进

OSPF1 的进程中

area 2

network 40.1.1.0 0.0.0.255

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 50.0.0.0 #通告其直连的网段

undo summary #关闭自动汇总

import-route ospf 1 #将 OSPF1 的路由条目重发布进 RIP1

的进程中

RTF:

system-view sysname RTF interface G0/0/0 ip address 172.16.1.1 24 interface G0/0/1 ip address 50.1.1.2 24 rip 1 version 2 network 50.0.00 network 172.16.0.0

undo summary

二、OSPF 高级配置实验组网

二、实验目的:

通过 OSPF 多区域、虚链路以及双向重发布的配置, 令全网全通

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 192.168.1.0 #通告其直连的网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 10.1.1.1 24

interface G0/0/1

ip address 192.168.1.2 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2 #进入 OSPF 进程 1,并指定其路

由器 ID

import-route rip 1 #将 RIP1 的路由条目重发布进

OSPF1 的进程中

area 1 #创建 OSPF 区域 1

network 10.1.1.0 0.0.0.255 #通告其直连网段

rip 1

version 2

network 192.168.1.0

undo summary

import-route ospf 1 #将 OSPF1 的路由条目重发布进 RIP1

的进程中

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

area 1

network 10.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

ospf 1 router-id 4.4.4.4

area 0

network 20.1.1.0 0.0.0.255

area 2

network 30.1.1.0 0.0.0.255

vlink-peer 5.5.5.5 #与对端设备 5.5.5.5 在区域 2 中配置虚

链路

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 5.5.5.5 32

ospf 1 router-id 5.5.5.5

area 2

network 30.1.1.0 0.0.0.255

东方瑞通 图 27

vlink-peer 4.4.4.4

area 3

network 40.1.1.0 0.0.0.255

RTF:

system-view

sysname RTF

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface Loopback0

ip address 6.6.6.6 32

ospf 1 router-id 6.6.6.6

import-route rip 1

area 3

network 40.1.1.0 0.0.0.255

rip 1

version 2

network 172.16.0.0

undo summary

import-route ospf 1

RTG:

system-view

sysname RTG

interface G0/0/1

ip address 172.16.1.2 24

rip 1

version 2

network 172.16.0.0

undo summary

三、配置 VRRP 实验组网

二、实验目的:

令 Client A 访问 HTTP Server, 默认从 RTB 到达, 之后 down 掉 RTB 的 G0/0/0 接口, 使 RTC 自动接替转发工作, 并且在 RTB 的 E0/0/0 接口正常工作之后从 RTC 抢夺转发权, 同时 RTB、 RTC 都实现端口跟踪

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

东方瑞通 图学习

ip address 172.16.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 172.16.0.0 #通告其直连的网段

network 10.0.0.0 #通告其直连的网段

network 20.0.0.0 #通告其直连的网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.2 24

interface G0/0/1

ip address 192.168.1.1 24

vrrp vrid 47 virtual-ip 192.168.1.254 #创建 VRRP 组,

指定组号与虚拟 IP 地址

vrrp vrid 47 priority 200 #配置当前路由器的 VRRP 优

先级

vrrp vrid 47 track interface G0/0/0 reduced 60 #配置

VRRP 端口跟踪,并指定在被跟踪的接口失效时,令当前

VRRP 路由器的优先级降低 60

rip 1

version 2

network 192.168.1.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 192.168.1.2 24

vrrp vrid 47 virtual-ip 192.168.1.254

vrrp vrid 47 priority 150

vrrp vrid 47 track interface G0/0/1 reduced 60

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 192.168.1.0

network 10.0.0.0

undo summary

四、配置静默接口实验组网

一、实验拓扑:

二、实验目的:

4 台路由器运行 RIPv2,通过将 RTA 的 G0/0/2 配置为静默接口,令 RTA 不再向 RTD 通告 RIP 路由信息,但从 RTD 接收路由信息

三、实验步骤:

RTA:

system-view #进入系统视图模式

东方瑞通 图学习

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

ip address 30.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

network 20.0.0.0 #通告其直连网段

network 30.0.0.0 #通告其直连网段

silent-interface G0/0/0 #将 G0/0/0 配置为静默接口

undo summary #关闭自动汇总

RTB:

system-view sysname RTB interface G0/0/0 ip address 10.1.1.2 24 rip 1 version 2

network 10.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

rip 1

version 2

network 20.0.0.0

undo summary

RTD:

system-view sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

undo summary

五、配置通过 filter-policy 控制路由实

验组网

一、实验拓扑:

其过滤掉 RTA 通告过来的路由中的网络 10.1.1.0/24

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

ip address 30.1.1.1 24 #配置 IP 地址及子网掩码

interface Loopback0 #创建环回接口 0

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路 由器 ID

area 0 #创建 OSPF 区域 1 network 10.1.1.0 0.0.0.255 #通告其直连网段 network 20.1.1.0 0.0.0.255 #通告其直连网段 network 30.1.1.0 0.0.0.255 #通告其直连网段

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 10.1.1.2 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2

area 0

network 10.1.1.0 0.0.0.255

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

acl 2001 #配置基本 ACL

rule deny source 10.1.1.0 0.0.0.255 #拒绝来自

10.1.1.0/24 的路由条目

rule permit source any

#允许来自其它任意网段的路由条

目

ospf 1 router-id 4.4.4.4

filter-policy 2001 import

#使用过滤策略调用 ACL

2001,并应用在入方向上

area 0

network 30.1.1.0 0.0.0.255

六、配置协议优先级实验组网 (一)

一、实验拓扑:

二、实验目的:

5 台路由器运行 RIPv2,通过更改协议优先级,令 RTC 学到的 所有路由条目的协议优先级值均变为 98

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 10.0.0.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

undo summary

preference 98 #配置协议优先级为 98

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

network 40.0.0.0

undo summary

RTE:

system-view

sysname RTE

interface G0/0/1

ip address 40.1.1.2 24

rip 1

version 2

network 40.0.0.0

undo summary

七、配置协议优先级实验组网(二)

一、实验拓扑:

二、实验目的:

5 台路由器运行 RIPv2,通过更改协议优先级,令 RTC 从 RTD 学到的 RIP 的路由条目的协议优先级值变为 98,而从 RTB 学 到的 RIP 的路由条目的协议优先级值保持不变

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

东方瑞通 图学习

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 10.0.0.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

network 40.0.0.0

undo summary

RTE:

system-view

sysname RTE

interface G0/0/1

ip address 40.1.1.2 24

rip 1

version 2

network 40.0.0.0

undo summary

八、配置 IS-IS 单区域实验组网

·、实验拓扑:

通过 IS-IS 单区域的配置, 令 RTA 与 RTC 可相互访问

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 **#进入相应的接口**

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

isis 1 #开启 IS-IS 路由功能

is-level level-1 #配置 IS-IS 路由器类型为层 1 路由

network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/1

ip address 20.1.1.2 24

isis enable 1

isis 1

is-level level-1

network-entity 01.0030.0300.3003.00

九、配置 IS-IS 多区域实验组网

二、实验目的:

通过 IS-IS 多区域的配置, 令全网全通, 并令 RTA 到达 RTD 的 200.1.1.0/24 网络优选经过 RTB

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

isis cost 10 #配置 IS-IS 接口的链路开销值

interface G0/0/1 #进入相应的接口
东方瑞通 图 23

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码 isis enable 1 #在指定接口上启用 IS-IS isis cost 20 #配置 IS-IS 接口的链路开销值 isis 1 #开启 IS-IS 路由功能 is-level level-1 #配置 IS-IS 路由器类型为层 1 路由 network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

isis enable 1

interface G0/0/1

ip address 40.1.1.1 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

RTD:

system-view sysname RTD interface G0/0/0 ip address 40.1.1.2 24 isis enable 1 interface G0/0/1 ip address 30.1.1.2 24 isis enable 1

interface Loopback0

ip address 200.1.1.1 24

isis enable 1

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

测试:

在 RTA 上 ping RTD 的 200.1.1.1:

[RTA]ping 200.1.1.1
PING 200.1.1.1: 56 data bytes, press CTRL C to break
Reply from 200.1.1.1: bytes=56 Sequence=1 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=2 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=3 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=4 ttl=254 time=20 ms
Reply from 200.1.1.1: bytes=56 Sequence=5 ttl=254 time=30 ms
200.1.1.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 20/28/30 ms
[10 M R]

在 RTA 上检测到达网络 200.1.1.1 所使用的路径:

[RTA]tracert 200.1.1.1
traceroute to 200.1.1.1(200.1.1.1), max hops: 30 ,packet length: 40,press CTRL
C to break
1 10.1.1.2 20 ms 20 ms 20 ms
2 30.1.1.2 30 ms 10 ms 20 ms
[RTA]

十、配置 IS-IS 路由验证及聚合实验组

XX

二、实验目的:

在 4 台路由器上配置认证,同时在 RTC 上配置路由聚合,令 RTD 只学习聚合后的路由 192.168.0.0/16

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

Designer : Yiqian Hu

40 https://huawei.easthome.com/

东方瑞通[®] 图 第3

isis authentication-mode md5 cipher *huawei* #配置邻 居关系验证方式及验证密码 interface Loopback0 #创建并进入环回接口 0 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 isis enable 1 #在指定接口上启用 IS-IS interface Loopback1 #创建并进入环回接口 1 ip address 192.168.2.1 24 #配置 IP 地址及子网掩码 #在指定接口上启用 IS-IS isis enable 1 interface Loopback2 #创建并进入环回接口 2 ip address 192.168.3.1 24 #配置 IP 地址及子网掩码 #在指定接口上启用 IS-IS isis enable 1 #开启 IS-IS 路由功能 isis 1 is-level level-1 #配置 IS-IS 路由器类型为层 1 路由 network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称 area-authentication-mode md5 cipher atnet #配置区 域验证方式及验证密码

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-1

network-entity 01.0020.0200.2002.00

area-authentication-mode md5 cipher atnet

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 10.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

interface G0/0/1

ip address 20.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

interface G0/0/2

ip address 30.1.1.1 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

area-authentication-mode md5 cipher atnet

domain-authentication-mode md5 cipher hcip #配置路

由域验证方式及验证密码

summary 192.168.0.0 255.255.0.0 level-2 #配置仅对引入

到层 2 的路由进行聚合

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

domain-authentication-mode md5 cipher hcip

测试:

查看 RTD 的 IS-IS 路由表,发现只有聚合路由条目:

	ISIS(1)	Level-2	Forwarding Tab	ole	
IPV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
192.168.0.0/16	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
10.1.1.0/24	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
20.1.1.0/24	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
30.1.1.0/24	10	NULL	GE0/0/0	Direct	D/-/L/-
Flags: D-Direct,	A-Added t	O URT, L	-Advertised in	LSPs, S-IGP S	Shortcut,

十一、配置 IS-IS 路由渗透实验组网

实验拓扑: RTB Area 1 G0/0/1 G0/0/0 30.1.1.0/24 Area 2 10.1.1.0/24 G0/0/0 G0/0/1 $\langle R \rangle$ RTD RTA G0/0/0 G0/0/ 200.1.1.0/24 40.1.1.0/24 20.1.1.0/24 G0/0/1 G0/0/0 RTC

二、实验目的:

配置 RTB 与 RTC, 令其将从层 2 学习到的路由条目渗透给层 1 的路由器

三、实验步骤

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

interface G0/0/1 #进入相应的接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

45 https://huawei.easthome.com/

isis enable 1 #在指定接口上启用 IS-IS

isis 1 #开启 IS-IS 路由功能

is-level level-1 #配置 IS-IS 路由器类型为层 1 路由

network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网

络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

isis enable 1

interface G0/0/1

ip address 40.1.1.1 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.2 24

isis enable 1

interface G0/0/1

ip address 30.1.1.2 24

isis enable 1

interface Loopback0

ip address 200.1.1.1 24

isis enable 1

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

测试:

完成上述配置后,在 RTA 上 ping RTD 的 200.1.1.1:

[RTA]ping 200.1.1.1
PING 200.1.1.1: 56 data bytes, press CTRL_C to break
Reply from 200.1.1.1: bytes=56 Sequence=1 ttl=254 time=20 ms
Reply from 200.1.1.1: bytes=56 Sequence=2 ttl=254 time=40 ms
Reply from 200.1.1.1: bytes=56 Sequence=3 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=4 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=5 ttl=254 time=30 ms
200.1.1.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 20/30/40 ms

再在 RTA 上查看 IS-IS 的路由表:

[RTA]display	isis route	9				
		Route	informat	ion for ISIS(1	_)	
		ISIS(1)) Level-1	Forwarding Ta	able	
IPV4 Destina	tion In	ntCost	ExtCost	ExitInterface	e NextHop	Flags
0.0.0.0/0	1(NULL	GE0/0/1 GE0/0/0	20.1.1.2 10.1.1.2	A/-/-/-
10.1.1.0/24	10		NULL	GE0/0/0	Direct	D/-/L/-
20.1.1.0/24	10		NULL	GE0/0/1	Direct	D/-/L/-
30.1.1.0/24	20		NULL	GE0/0/0	10.1.1.2	A/-/-/-
40.1.1.0/24	20		NULL	GE0/0/1	20.1.1.2	A/-/-/-
Flags: 1	D-Direct, A	A-Added t	to URT, L	-Advertised in	LSPs, S-IGP	Shortcut,
			U-Up/Dow	n Bit Set		
[RTA]				- Anno I da con		

发现 RTA 的 IS-IS 路由表中并没有关于 200.1.1.0 网络的路由

条目

东方瑞通 图 23

此时,需要在 RTB 及 RTC 上做如下配置:

RTB:

isis 1

import-route isis level-2 into level-1

RTC:

isis 1

import-route isis level-2 into level-1

再次查看	RTA 的	IS-IS	路由表
------	-------	-------	-----

IPV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
0.0.0/0	10	NULL	GE0/0/1	20.1.1.2	A/-/-/-
10.1.1.0/24	10	NULL	GE0/0/0	Direct	D/-/I/-
20.1.1.0/24	10	NULL	GE0/0/1	Direct	D/-/L/-
30.1.1.0/24	20	NULL	GE0/0/0	10.1.1.2	A/-/-/-
40.1.1.0/24	20	NULL	GE0/0/1	20.1.1.2	A/-/-/-
200.1.1.0/24	20	NULL	GE0/0/0	10.1.1.2	A/-/-/U

十二、配置 RIPng 实验组网

-、实验拓扑:

二、实验目的:

通过 RIPng 的配置, 令 RTA 可以学习到 RTC 的路由条目,并与 之通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

ipv6 #开启设备的 IPv6 功能

ripng #开启并进入 RIPng 进程

interface G0/0/0 #进入相应接口

ipv6 enable #在接口下开启 IPv6 功能

ipv6 address FE80::1 link-local #配置该接口的链路本地

地址

ipv6 address 1::1/64 #配置该接口的通讯地址

ripng 1 enable #在该接口上开启 RIPng 进程

RTB:

system-view

sysname RTB

ipv6

ripng

interface G0/0/1

ipv6 enable

ipv6 address FE80::2 link-local

ipv6 address 2::2/64

ripng 1 enable

interface G0/0/0

ipv6 enable

ipv6 address FE80::3 link-local

ipv6 address 3::3/64

ripng 1 enable

RTC:

system-view

sysname RTC

ipv6

ripng

interface G0/0/1

ipv6 enable

ipv6 address FE80::4 link-local

ipv6 address 4::4/64

ripng 1 enable

十三、配置 OSPFv3 实验组网

-、实验拓扑:

二、实验目的:

通过 OSPFv3 的配置, 令 RTA 可以学习到 RTC 的路由条目,并 与之通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface Loopback0 #创建并进入环回接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ipv6 #开启设备的 IPv6 功能

ospfv3 #开启并进入 OSPFv3 进程

router-id 1.1.1.1 #配置 OSPF 路由器 ID

interface G0/0/0 #进入相应接口

ipv6 enable #在接口下开启 IPv6 功能

ipv6 address FE80::1 link-local #配置该接口的链路本地

53 https://huawei.easthome.com/

地址

ipv6 address 1::1/64 #配置该接口的通讯地址

ospfv3 1 area 0.0.0.0 #在该接口上开启 OSPFv3 进程,并

指定其所属区域

RTB:

system-view

sysname RTB

interface Loopback0

ip address 2.2.2.2 32

ipv6

ospfv3

router-id 2.2.2.2

interface G0/0/1

ipv6 enable

ipv6 address FE80::2 link-local

ipv6 address 2::2/64

ospfv3 1 area 0.0.0.0

interface G0/0/0

ipv6 enable

ipv6 address FE80::3 link-local

ipv6 address 3::3/64

ospfv3 1 area 0.0.0.0

RTC:

system-view

sysname RTC

interface Loopback0

ip address 3.3.3.3 32

ipv6

ospfv3

router-id 3.3.3.3

interface G0/0/1

ipv6 enable

ipv6 address FE80::4 link-local

ipv6 address 4::4/64

ospfv3 1 area 0.0.0.0

十四、配置 IPv6 各类地址实验组网

、实验拓扑:
 RTB
 元状态配置
 G0/0/0
 2001:DB8:12::1/64
 G0/0/0
 RTA
 G0/0/1
 2001:DB8:13::1/64

二、实验目的:

RTA 的 G0/0/0 与 G0/0/1 接口采用手工方式配置 IPv6 地址; RTB 的 G0/0/0 接口通过无状态地址自动配置的方式获取 IPv6 地址; RTC 的 G0/0/0 接口通过 DHCPv6 的方式获取 IPv6 地址

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

ipv6 #开启设备的 IPv6 功能

Designer : Yiqian Hu

56 https://huawei.easthome.com/

东方瑞通 图 23

dhcp enable #开启 DHCP 功能 dhcpv6 pool easthome #创建 DHCPv6 地址池并命名 address prefix 2001:DB8:13::/64 #指定分配的网段及掩码 excluded-address 2001:DB8:13::1 #排除不分配的地址 interface G0/0/0 #进入相应的接口 ipv6 enable #在接口下开启 IPv6 功能 ipv6 address auto link-local #令接口自动生成链路本地 地址 ipv6 address 2001:DB8:12::1 64 / #配置该接口的通讯地址 undo ipv6 nd ra halt #开启发布 RA 报文的功能 interface G0/0/1 ipv6 enable ipv6 address auto link-local ipv6 address 2001:DB8:13::1 64 dhcpv6 server easthome RTB: system-view sysname RTB ipv6 interface G0/0/0

ipv6 enable

ipv6 address auto link-local

ipv6 address auto global

#令该接口通过无状态地址自动

配置的方式获取 IPv6 地址

RTC:

system-view

sysname RTC

ipv6

dhcp enable

interface G0/0/0

ipv6 enable

ipv6 address auto link-local

ipv6 address auto dhcp #令该接口通过 DHCPv6 的方式获

取 IPv6 地址

测试:

在 RTB 上查看其接口的 IPv6 地址

[RTB]display ipv6 interface g0/0/0
GigabitEthernet0/0/0 current state : UP
IPv6 protocol current state : UP
IPv6 is enabled, link-local address is FE80::2E0:FCFF:FE13:36C5
Global unicast address(es):
2001:DB8:12:0:2E0:FCFF:FE13:36C5,
subnet is 2001:DB8:12::/64 [SLAAC 1970-01-01 00:05:25 2592000S]
Joined group address(es):
FF02::1:FF13:36C5
FF02::2
FF02::1
MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND retransmit interval is 1000 milliseconds
Hosts use stateless autoconfig for addresses
[RTB]

再在 RTB 上查看其接口 G0/0/0 的 MAC 地址,确认其 IPv6 地

址是使用其自身的接口 MAC 地址自动生成的

[RTB]display interface g0/0/	0			
GigabitEthernet0/0/0 current	st	ate : UP		
Line protocol current state	: D	OWN		
Description:HUAWEI, AR Series	s,	GigabitEthernet0/	0/0 Interface	
Route Port, The Maximum Trans	mit	Unit is 1500		
Internet protocol processing		disabled		
IP Sending Frames' Format is	PK	TFMT ETHNT 2, Har	dware address is	00e0-fc13-36c5
Last physical up time : 202	21-	06-10 12:14:25 UT	C-08:00	
Last physical down time : 202	21-	06-10 12:14:16 UT	C-08:00	
Current system time: 2021-06-	-10	12:25:21-08:00		
Port Mode: FORCE COPPER				
Speed : 1000, Loopback: NON	E			
Duplex: FULL, Negotiation: 1	ENA	BLE		
Mdi : AUTO				
Last 300 seconds input rate (0 b	its/sec, 0 packet	s/sec	
Last 300 seconds output rate	0	bits/sec, 0 packe	ts/sec	
Input peak rate 176 bits/sec	, Re	cord time: 2021-0	6-10 12:18:28	
Output peak rate 232 bits/see	c,R	ecord time: 2021-	06-10 12:19:38	
New York Market Control Constant Press Control				
Input: 8 packets, 816 bytes				
Unicast:	Ο,	Multicast:		
Broadcast:	Ο,	Jumbo:	0	
Discard:	Ο,	Total Error:	0	
CRC:	0,	Giants:	0	
More				

在 RTC 上查看其接口的 IPv6 地址

[RTC]display dhcpv6 client
GigabitEthernet0/0/0 is in stateful DHCPv6 client mode.
State is BOUND.
Preferred server DUID : 0003000100E0FC1B6A14
Reachable via address : FE80::2E0:FCFF:FE1B:6A15
IA NA IA ID 0x00000031 T1 43200 T2 69120
Obtained : 2021-06-10 12:20:02
Renews : 2021-06-11 00:20:02
Rebinds : 2021-06-11 07:32:02
Address : 2001:DB8:13::2
Lifetime valid 172800 seconds, preferred 86400 seconds
Expires at 2021-06-12 12:20:02(172265 seconds left)

[RTC]

十五、配置 IBGP 与 EBGP 会话实验组

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

Designer : Yiqian Hu

61 https://huawei.easthome.com/

东方瑞通 图 2 2 3

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 bgp 65001 #开启 BGP 路由功能,并配置其 AS 号 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic **#关闭自动汇**总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

#告知对等体,自己为其访问

EBGP 的下一跳路由器

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4.4 255.255.255.255 40.1.1.1

测试:

分别在 RTA 与 RTE 上查看路由表:

[RTA]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib		
Routing Tables: Pub Destinatio	lic ns : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
1.1.1.1/32 2.2.2.2/32	Direct Static	0 60	0 0	D RD	127.0.0.1 10.1.1.2	LoopBack0 GigabitEthernet
10.1.1.0/24 0/0/0	Direct	0		D	10.1.1.1	GigabitEthernet
10.1.1.1/32 0/0/0	Direct	0	0	D	127.0.0.1	GigabitEthernet
10.1.1.255/32 0/0/0	Direct	0	0	D	127.0.0.1	GigabitEthernet
20.1.1.0/24 0/0/0	EBGP	255		RD	2.2.2.2	GigabitEthernet
30.1.1.0/24 0/0/0	EBGP	255		RD	2.2.2.2	GigabitEthernet
40.1.1.0/24 0/0/0	EBGP	255	0	RD	2.2.2.2	GigabitEthernet
127.0.0.0/8 127.0.0.1/32	Direct Direct	0 0	0	D D	127.0.0.1 127.0.0.1	InLoopBack0 InLoopBack0
127.255.255.255/32 172.16.1.0/24	Direct EBGP	0 255	0 0	D RD	127.0.0.1 2.2.2.2	InLoopBack0 GigabitEthernet
192.168.1.0/24 0/0/1	Direct	0	0	D	192.168.1.1	GigabitEthernet
192.168.1.1/32 0/0/1	Direct	0	0	D	127.0.0.1	GigabitEthernet
192.168.1.255/32 0/0/1	Direct	0		D	127.0.0.1	GigabitEthernet
255.255.255.255/32	Direct		0	D	127.0.0.1	InLoopBack0

Pouting Tables . Duk	lic					
Destinatio	ons : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
4.4.4.4/32	Static	60	0	RD	40.1.1.1	GigabitEthernet
0/0/1						
5.5.5.5/32	Direct	0	0	D	127.0.0.1	LoopBack0
10.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1	777 477	0.5.5				
20.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
0/0/I 20 1 1 0/24	FRCD	255		DD	1 1 1 1	CicchitEthorpot
0/0/1	EDGF	200	0	KD	4.4.4.4	GIGADICECHEINEC
40.1.1.0/24	Direct	0	0	D	40 1 1 2	GigabitEthernet
0/0/1	DIICOL				10.1.1.2	orgabitelenernet
40.1.1.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1						
40.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1						
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct		0	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct			D	127.0.0.1	InLoopBack0
172.16.1.0/24	Direct	0	0	D	172.16.1.1	GigabitEthernet
0/0/0						
172.16.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
172.16.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
192.168.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1						
255.255.255.255/32	Direct		0	D	127.0.0.1	InLoopBack0

十六、配置通过 AS-Path 属性移除私 有 AS 号实验组网

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯, 之后在 RTD 上配置 AS-Path 属性, 令其在将网络 192.168.1.0/24 发送给 RTE 时, 移除其所属的私有 AS 号码

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

69 https://huawei.easthome.com/

东方瑞通 图 23

interface G0/0/1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由(对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

东方瑞通 图学习

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

peer 5.5.5.5 public-as-only #移除私有 AS 号码, 仅保留

公有 AS 号码

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4 255.255.255.255 40.1.1.1

测试:

在 RTD 上未应用 public-as-only 参数时, RTE 的 BGP 表项为:

[RTE]	dis bgp routing-t	able				
BGP Stat	Local router ID i tus codes: * - val h - his Origin	s 5.5.5.5 id, > - best, tory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S – Stale	
Tota	al Number of Route	s: 6				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.1.0	4.4.4.4			0	1 65001i
RTE						

在 RTD 上应用 public-as-only 参数后, RTE 的 BGP 表项为:

RTE	dis bgp routing-ta	able				
BGP Stat	Local router ID is tus codes: * - val: h - hist Origin	s 5.5.5.5 id, > - best, tory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S - Stale	
Tota	al Number of Route:	в: б				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogr
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.1.0	4.4.4.4			0	1i
ਸ਼ਾਸ਼						

十七、配置 BGP 原子汇总实验组网

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯, 之后在 RTD 上配置原子汇总, 将其网络 192.168.1.0/24 汇总为 192.168.0.0/16 通告给 RTE, 而 192.168.1.0/24 的明晰路由则不再通告

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由(对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

#进行路由

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

aggregate 192.168.0.0 16 detail-suppressed

汇总,并拒绝明晰路由

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4.4 255.255.255.255 40.1.1.1

测试:

在 RTD 上没有配置原子汇总时, 查看 RTE 的路由表:

[RTE]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib		
Routing Tables: Pub Destinatio	lic ns : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
4.4.4.4/32	Static	60	0	RD	40.1.1.1	GigabitEthernet
5.5.5.5/32	Direct		0	D	127.0.0.1	LoopBack0
10.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
0/0/1						
20.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
30 1 1 0/24	FRCD	255	0	PD	ΛΛΛΛ	GigabitEthorpot
0/0/1	EDGE	200		КD	4.4.4.4	GigabitEthernet
40.1.1.0/24	Direct	0	0	D	40.1.1.2	GigabitEthernet
0/0/1						
40.1.1.2/32	Direct	0		D	127.0.0.1	GigabitEthernet
0/0/1						
40.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1					107 0 0 1	
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBackU
127.0.0.1/32	Direct	0	0	D	127.0.0.1	InLoopBackU
127.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0
172.16.1.0/24	Direct	0	0	D	172.16.1.1	GigabitEthernet
	Diment				107 0 0 1	CischitEthernet
1/2.10.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
172 16 1 255/32	Direct	0	0	D	127 0 0 1	GigabitEthernet
0/0/0	DITCOL				127.0.0.1	orgabitelenernet
192.168.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1						
255.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0

在 RTD 上配置了原子汇总后,查看 RTE 的路由表:

[RTE]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib				
Routing Tables: Pub Destinatio	lic ns : 16		Routes	Routes : 16				
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface		
4.4.4.4/32	Static	60	0	RD	40.1.1.1	GigabitEthernet		
5.5.5.5/32	Direct		0	D	127.0.0.1	LoopBack0		
10.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet		
0/0/1								
20.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet		
0/0/1								
30.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet		
0/0/1								
40.1.1.0/24	Direct	0	0	D	40.1.1.2	GigabitEthernet		
0/0/1								
40.1.1.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet		
0/0/1	2000							
40.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet		
0/0/1					107 0 0 1	T-T		
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBackU		
107 055 055 055 /20	Direct	0	0	D	127.0.0.1	Тигоорваско		
127.200.200.200/32	Direct	0	0	D	127.0.0.1	Іпьоорваско		
1/2.16.1.0/24	Direct	0	0	D	172.16.1.1	GigabitEthernet		
0/0/0	5.				107 0 0 1			
1/2.16.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet		
170 16 1 055 (20					107 0 0 1	GinnhitZthonnat		
1/2.16.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet		
100 100 0 0/16	TRAD	OFF	0	222		CI CI I I PIL		
192.168.0.0/16	EBGP	200	0	RD	4.4.4.4	GigabitEthernet		
0/0/1 255 255 255 255 255 /22	Direct	0	0	D	127 0 0 1	ThicopPackQ		
233.233.233.233/32	Direct		0	D	127.0.0.1	тпьоорваско		

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯, 之后在 RTD 上配置汇总子, 将其网络 192.168.1.0/24 汇总为 192.168.0.0/16 通告给 RTE, 并在 RTE 上查看网络 192.168.0.0/16 的明细信息

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由(对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

aggregate 192.168.0.0 16 detail-suppressed as-set

#

在原子汇总的基础上配置汇总子

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4 255.255.255.255 40.1.1.1

测试:

在 RTD 上仅配置了原子汇总,而没有配置汇总子时,查看 RTE 的 BGP 表:

[RTE]	dis bgp routing-ta	able				
BGP Stat	Local router ID is tus codes: * - vali h - hist Origin :	s 5.5.5.5 .d, > - best, .ory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, .ncomplete	S - Stale	
Tota	al Number of Routes	s: 6				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.0.0/16	4.4.4.4			0	1i
ושתים						

在 RTE 的 BGP 表中具体查看网络 192.168.0.0 的明细内容:

[RTE]display bgp routing-table 192.168.0.0 BGP local router ID : 5.5.5.5 Local AS number : 7 Paths: 1 available, 1 best, 1 select BGP routing table entry information of 192.168.0.0/16: From: 4.4.4.4 (4.4.4.4) Route Duration: 00h03m29s Relay IP Nexthop: 40.1.1.1 Relay IP Out-Interface: GigabitEthernet0/0/1 Original nexthop: 4.4.4.4 Qos information : 0x0 AS-path 1, origin igp, pref-val 0, valid, external, best, select, active, pre 2 55 Aggregator: AS 1, Aggregator ID 4.4.4.4, Atomic-aggregate Not advertised to any peer yet

在 RTD 上配置完原子汇总, 再配置上汇总子后, 查看 RTE 的

5/1

BGP 表:

[RTE]]dis bgp routing-ta	ble				
BGP Sta	Local router ID is tus codes: * - vali h - hist Origin :	5.5.5.5 d, > - best, ory, i - int i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, a ncomplete	S – Stale	
Tota	al Number of Routes					
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	4.4.4.4			0	1i
*>	20.1.1.0/24	4.4.4.4			0	1i
*>	30.1.1.0/24	4.4.4.4	0		0	1i
*>	40.1.1.0/24	4.4.4.4	0		0	1i
*>	172.16.1.0/24	0.0.0.0	0		0	i
*>	192.168.0.0/16	4.4.4.4			0	1 65001i
[RTE]]					

在 RTE 的 BGP 表中具体查看网络 192.168.0.0 的明细内容:

[RTE]display bgp routing-table 192.168.0.0
BGP local router ID : 5.5.5.5
Local AS number : 7
Paths: 1 available, 1 best, 1 select
BGP routing table entry information of 192.168.0.0/16:
From: 4.4.4.4 (4.4.4.4)
Route Duration: 00h00m08s
Relay IP Nexthop: 40.1.1.1
Relay IP Out-Interface: GigabitEthernet0/0/1
Original nexthop: 4.4.4.4
Qos information : 0x0
AS-path 1 65001, origin igp, pref-val 0, valid, external, best, select, active,
pre 255
Aggregator: AS 1, Aggregator ID 4.4.4.4, Atomic-aggregate
Not advertised to any peer yet

RTE

十九、配置 BGP 本地优先级实验组网

二、实验目的:

通过 BGP 本地优先级的配置, 令 Client A 访问 HTTP Server 经 过 RTB, Client A 访问 FTP Server 经过 RTC

```
三、实验步骤:
```

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface LoopBack0 #进入相应接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 interface LoopBack1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack2 #进入相应接口 ip address 172.16.1.1 24 #配置 IP 地址及子网掩码 bgp 65001 #开启 BGP 路由功能,并配置其 AS 号 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 peer 3.3.3.3 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 3.3.3.3 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 3.3.3.3 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 24 #通告自己的网段及子网掩码 network 172.16.1.0 24 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总

96 https://huawei.easthome.com/

ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址) ip route-static 3.3.3.3 32 20.1.1.2 #配置静态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

acl number 2001 #创建基本 ACL 2001

rule 5 permit source 192.168.1.0 0.0.0.255 #匹配源网

段,并定义为允许转发

acl number 2002 #创建基本 ACL 2002

rule 5 permit source 172.16.1.0 0.0.0.255 #匹配源网段,

并定义为允许转发

route-policy atnet permit node 10 #创建路由策略,并定

义为允许策略,序列号为10

if-match acl 2001 #匹配 ACL 2001

apply local-preference 200 #若能成功匹配,则配置其本

地优先级为 200

route-policy atnet permit node 20 #创建路由策略,并定

义为允许策略,序列号为20

if-match acl 2002 #匹配 ACL 2002

apply local-preference 100

#若能成功匹配,则配置其本

地优先级为 100

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

peer 3.3.3.3 next-hop-local

peer 4.4.4.4 next-hop-local

peer 4.4.4.4 route-policy atnet export # 在指向对等体

4.4.4 的外出方向上,调用名为 atnet 的路由策略

rip 1

version 2

network 2.0.0.0

network 30.0.0.0

undo summary

ip route-static 1.1.1.1 32 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

interface G0/0/1

ip address 40.1.1.1 24

interface LoopBack0

ip address 3.3.3.3 32

acl number 2001

rule 5 permit source 192.168.1.0 0.0.0.255

acl number 2002

rule 5 permit source 172.16.1.0 0.0.0.255

route-policy atnet permit node 10

if-match acl 2001

apply local-preference 100

route-policy atnet permit node 20

if-match acl 2002

apply local-preference 200

bgp 1

router-id 3.3.3.3

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

peer 2.2.2.2 next-hop-local

peer 4.4.4.4 next-hop-local

peer 4.4.4.4 route-policy atnet export

rip 1

version 2

network 3.0.0.0

network 40.0.0.0

undo summary

ip route-static 1.1.1.1 32 20.1.1.1

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.2 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

interface LoopBack1

ip address 100.1.1.1 24

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

network 40.0.0.0

undo summary

测试:

在 RTD 上查看其 BGP 表:

[RTD]	[RTD]dis bgp routing-table							
BGP 1 Stati	Local router ID i: us codes: * - val: h - his Origin	s 4.4.4.4 id, > - best, tory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S – Stale			
Tota	l Number of Route:	в: 7						
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn		
*>	30.1.1.0/24	0.0.0.0	0		0			
*>	40.1.1.0/24	0.0.0.0	0		0			
*>	100.1.1.0/24	0.0.0.0	0		0	i		
*>i	172.16.1.0/24	3.3.3.3	0	200	0	65001i		
* i		2.2.2.2	0	100	0	65001i		
*>i	192.168.1.0	2.2.2.2	0	200	0	65001i		
* i		3.3.3.3	0	100	0	65001i		
[RTD]					0.0000			

在 RTD 上从 100.1.1.1 去 ping 192.168.1.1, 观察其转发路径:

[RTD]tracert -a 100.1.1.1 192.168.1.1 traceroute to 192.168.1.1(192.168.1.1), max hops: 30 ,packet length: 40,press CTRL_C to break 1 30.1.1.1 50 ms 50 ms 40 ms 2 10.1.1.1 70 ms 60 ms 80 ms [RTD]

在 RTD 上从 100.1.1.1 去 ping 172.16.1.1,观察其转发路径:

[RTD]tracert -a	a 100.	1.1.1	172.16.1.1					
traceroute to RL_C to break	172.	16.1.	1(172.16.1.1),	max hops:	30 ,packet	length:	40,press	CT
1 40.1.1.1 80	ms 5	0 ms	40 ms					
2 20.1.1.1 70 [RTD]	ms 6	50 ms	40 ms					

二十、配置 BGP 多出口鉴别实验组网

二、实验目的:

通过 BGP 多出口鉴别的配置, 令 Client A 访问 HTTP Server 经 过 RTB, Client A 访问 FTP Server 经过 RTC

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface LoopBack0 #进入相应接口

东方瑞通 图学习

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 interface LoopBack1 #进入相应接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack2 #进入相应接口 ip address 172.16.1.1 24 #配置 IP 地址及子网掩码 acl number 2001 #创建基本 ACL 2001 rule 5 permit source 192.168.1.0 0.0.0.255 #匹配源网 段,并定义为允许转发 acl number 2002 #创建基本 ACL 2002 rule 5 permit source 172.16.1.0 0.0.0.255 #匹配源网段, 并定义为允许转发 route-policy atnet permit node 10 #创建路由策略,并定 义为允许策略,序列号为10 if-match acl 2001 #匹配 ACL 2001 apply cost 200 #若能成功匹配,则配置其 MED 值为 200 route-policy atnet permit node 20 #创建路由策略,并定 义为允许策略, 序列号为 20 if-match acl 2002 #匹配 ACL 2002 apply cost 100 #若能成功匹配,则配置其 MED 值为 100 route-policy huawei permit node 10 #创建路由策略, 并定义为允许策略,序列号为10 if-match acl 2001 #匹配 ACL 2001

东方瑞通[®] 图 第3

apply cost 100 #若能成功匹配,则配置其 MED 值为 100
route-policy huawei permit node 20 #创建路由策略,
并定义为允许策略,序列号为 20
if-match acl 2002 #匹配 ACL 2002
apply cost 200 #若能成功匹配,则配置其 MED 值为 200
bgp 65001 #开启 BGP 路由功能,并配置其 AS 号
router-id 1.1.1.1 #配置设备的 BGP 路由器 ID
peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及
远程自治系统号码
peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为
EBGP 关系,并指出到对等体所跨越的跳数
peer 2.2.2.2 connect-interface LoopBack0 #指定自身
与对等体之间用哪个接口来承载更新
peer 2.2.2.2 route-policy huawei export #在指向对等体
2.2.2.2 的外出方向上,调用名为 huawei 的路由策略
peer 3.3.3.3 as-number 1 #指定对等体的路由器 ID, 以及
远程自治系统号码
peer 3.3.3.3 ebgp-max-hop 2 #指定自身与对等体为
EBGP 关系,并指出到对等体所跨越的跳数
peer 3.3.3.3 connect-interface LoopBack0 #指定自身
与对等体之间用哪个接口来承载更新
peer 3.3.3.3 route-policy atnet export # 在指向对等体

106 https://huawei.easthome.com/

3.3.3.3 的外出方向上,调用名为 atnet 的路由策略 network 192.168.1.0 24 #通告自己的网段及子网掩码 network 172.16.1.0 24 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址) ip route-static 3.3.3.3 32 20.1.1.2 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

- peer 1.1.1.1 connect-interface LoopBack0
- peer 3.3.3.3 as-number 1
- peer 3.3.3.3 connect-interface LoopBack0
- peer 4.4.4.4 as-number 1
- peer 4.4.4.4 connect-interface LoopBack0
- network 10.1.1.0 255.255.255.0
- network 30.1.1.0 255.255.255.0
- network 40.1.1.0 255.255.255.0
- network 100.1.1.0 255.255.255.0
- undo summary automatic
- peer 3.3.3.3 next-hop-local
- peer 4.4.4.4 next-hop-local
- rip 1
- version 2
- network 2.0.0.0
- network 30.0.0.0
- undo summary
- ip route-static 1.1.1.1 32 10.1.1.1

RTC:

- system-view
- sysname RTC
- Designer : Yiqian Hu

interface G0/0/0

ip address 20.1.1.2 24

interface G0/0/1

ip address 40.1.1.1 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

peer 2.2.2.2 next-hop-local

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 3.0.0.0

network 40.0.0.0

undo summary

ip route-static 1.1.1.1 32 20.1.1.1

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.2 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

interface LoopBack1

ip address 100.1.1.1 24

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 30.1.1.0 255.255.255.0

network 40.1.1.0 255.255.255.0

network 100.1.1.0 255.255.255.0

undo summary automatic

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

network 40.0.0.0

undo summary

测试:

在 RTD 上查看其 BGP 表:

[RTD]	dis bgp routing-ta	able				
BGP] Stati	Local router ID i. 15 codes: * - val. h - his Origin	s 4.4.4.4 id, > - best, tory, i - int : i - IGP, e -	d - damped, ernal, s - EGP, ? - i	suppressed, ncomplete	S – Stale	
Total	l Number of Route	в: 7				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	30.1.1.0/24	0.0.0.0	0		0	
*>	40.1.1.0/24	0.0.0.0	0		0	
*>	100.1.1.0/24	0.0.0.0	0		0	i
*>i	172.16.1.0/24	3.3.3.3	0	200	0	65001i
* i		2.2.2.2	0	100	0	65001i
*>i	192.168.1.0	2.2.2.2	0	200	0	65001i
* i		3.3.3.3	0	100	0	65001i
[RTD]						

在 RTD 上从 100.1.1.1 去 ping 192.168.1.1, 观察其转发路径:

[RTD]tracert -a 100.1.1.1 192.168.1.1 traceroute to 192.168.1.1(192.168.1.1), max hops: 30 ,packet length: 40,press CTRL_C to break 1 30.1.1.1 50 ms 50 ms 40 ms 2 10.1.1.1 70 ms 60 ms 80 ms [RTD]

在 RTD 上从 100.1.1.1 去 ping 172.16.1.1,观察其转发路径:

[RTD]tracert -	a 10	0.1.1.1	172.16.1.1					
traceroute to RL_C to break	17	2.16.1.	1(172.16.1.1),	, max hops:	30 ,packe	t length:	40,press	CT
1 40.1.1.1 80	ms	50 ms	40 ms					
2 20.1.1.1 70 [RTD]	ms	60 ms	40 ms					

二十一、配置 BGP 优先级值实验组

XX

二、实验目的:

通过 BGP 优先级值的配置, 令 RTA 访问 FTP Server 经过 RTD 到达,其余路径根据协议自主选择

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

东方瑞通 图学习

ip address 40.1.1.2 24 #配置 IP 地址及子网掩码

interface LoopBack0 #进入相应接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

acl number 2001 #创建基本 ACL 2001

rule 5 permit source 192.168.1.0 0.0.0.255 #匹配源网

段,并定义为允许转发

route-policy atnet permit node 10 #创建路由策略,并定

义为允许策略,序列号为10

if-match acl 2001 #匹配 ACL 2001

apply preferred-value 100 #若能成功匹配,则配置其优先 级值为 100

route-policy atnet permit node 20 #创建路由策略,并定 义为允许策略,序列号为 20

bgp 100 #开启 BGP 路由功能,并配置其 AS 号

router-id 1.1.1.1 #配置设备的 BGP 路由器 ID

peer 2.2.2.2 as-number 200 #指定对等体的路由器 ID,

以及远程自治系统号码

peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为

EBGP 关系,并指出到对等体所跨越的跳数

peer 2.2.2.2 connect-interface LoopBack0 #指定自身

与对等体之间用哪个接口来承载更新

peer 4.4.4.4 as-number 400 #指定对等体的路由器 ID,

以及远程自治系统号码

peer 4.4.4.4 ebgp-max-hop 2 # 指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 4.4.4.4 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 peer 4.4.4.4 route-policy atnet import # 在指向对等体 4.4.4.4 的进入方向上,调用名为 atnet 的路由策略 network 10.1.1.0 24 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址) ip route-static 4.4.4.4 32 40.1.1.1 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB: system-view sysname RTB interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 10.1.1.2 24 interface LoopBack0

ip address 2.2.2.2 32

bgp 200

router-id 2.2.2.2

peer 1.1.1.1 as-number 100

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 300

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

undo summary automatic

ip route-static 1.1.1.1 32 10.1.1.1

ip route-static 3.3.3.3 32 20.1.1.2

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

东方瑞通 图 23

ip address 3.3.3.3 32

interface LoopBack1

ip address 192.168.1.1 24

bgp 300

router-id 3.3.3.3

peer 2.2.2.2 as-number 200

peer 2.2.2.2 ebgp-max-hop 2

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 400

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 30.1.1.0 255.255.255.0

network 192.168.1.0 255.255.255.0

undo summary automatic

ip route-static 2.2.2.2 32 20.1.1.1

ip route-static 4.4.4.4 32 30.1.1.2

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 400

router-id 4.4.4.4

peer 3.3.3.3 as-number 300

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

peer 1.1.1.1 as-number 100

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

network 40.1.1.0 255.255.255.0

undo summary automatic

ip route-static 3.3.3.3 32 30.1.1.1

ip route-static 1.1.1.1 32 40.1.1.2

测试:

在 RTA 上查看 BGP 表项,确定其访问网络 192.168.1.0 的下一 跳为 4.4.4.4, 目经过 4.4.4.4 的优先级值为 100

BGP Sta	Local router ID	is 1.1.1.1 lid. > - best.	d – damped.			
Dea	h - hi	story, i - int	ernal, s -	suppressed,	S - Stale	
	Origin	: i - IGP, e -	EGP, ? - i	ncomplete		
Tot	al Number of Rout	es: 7				
	Network	NextHop	MED	LocPrf	PrefVal	Path/Ogn
*>	10.1.1.0/24	0.0.0.0	0		0	
*>	20.1.1.0/24	2.2.2.2	0		0	200i
*>	30.1.1.0/24	2.2.2.2			0	200 300i
*		4.4.4.4			0	400 300i
	40.1.1.0/24	4.4.4.4	0		0	400i
*>					and the second second second	100 200:
*>	192.168.1.0	4.4.4.4			100	400 3001

二十二、配置 BGP filter-policy 实验 组网

二、实验目的:

4 台路由器按图中所示配置 BGP 协议, 令其可以彼此通讯, 之 后在 RTB 上配置 filter-policy, 防止 RTB 将网络 192.168.1.0/24 通告至 RTA

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

东方瑞通 图 23

#配置 IP 地址及子网掩码 ip address 10.1.1.1 24 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 bgp 65001 #开启 BGP 路由功能,并配置其 AS 号 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 undo summary automatic #关闭自动汇总 ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由(对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view sysname RTB interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 10.1.1.2 24 interface LoopBack0

ip address 2.2.2.2 32

acl number 2001 #创建基本 ACL 2001

rule 5 deny source 192.168.1.0 0.0.0.255 #匹配源网段,

并定义为拒绝转发

rule 10 permit source 0.0.0.0 255.255.255.255 #匹配源

网段,并定义为允许所有

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 1.1.1.1 filter-policy *2001* export #在指向 1.1.1.1 的 对等体关系上配置过滤策略,调用 ACL 2001,并指定为外出方 向

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 10.1.1.0 255.255.255.0

network 20.1.1.0 255.255.255.0

undo summary automatic

ip route-static 1.1.1.1 32 10.1.1.1

rip 1

version 2

network 20.0.0.0

network 2.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 7

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

undo summary automatic

ip route-static 4.4.4.4 32 30.1.1.2

rip 1

version 2

network 20.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

interface LoopBack1

ip address 192.168.1.1 24

bgp 7

router-id 4.4.4.4

peer 3.3.3.3 as-number 1

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

network 192.168.1.0 255.255.255.0

undo summary automatic

ip route-static 3.3.3.3 32 30.1.1.1

二十三、配置 BGP ip ip-prefix 实验 组网

二、实验目的:

4 台路由器按图中所示配置 BGP 协议, 令其可以彼此通讯, 之 后在 RTB 上配置 ip ip-prefix, 防止 RTB 将网络 192.168.1.0/24 通告至 RTA, 但允许 RTA 学习网络 192.168.10.32/27 的路由条 目

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

Designer : Yiqian Hu

126 https://huawei.easthome.com/

东方瑞通 图 23

interface G0/0/0 #进入相应接口 ip address 10.1.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #开启 BGP 路由功能,并配置其 AS 号 bap 65001 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 undo summary automatic **#关闭自动汇**总 ip route-static 2.2.2.2 32 10.1.1.2 #配置静态路由 (对等 体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

ip ip-prefix 1 deny 192.0.0.0 8 less-equal 24 # 定义前缀

列表, 拒绝以 192 开头, 且掩码长度在 8 位至 24 位的网络

ip ip-prefix *1* permit 192.0.0.0 8 greater-equal 25 # 定 义前缀列表, 允许以 192 开头, 且掩码长度在 25 位及以上的网 络

ip ip-prefix 1 permit 20.0.0.0 8 le 24 #定义前缀列表, 允许以 20 开头, 且掩码长度在 8 位至 24 位的网络 ip ip-prefix 1 permit 30.0.0.0 8 le 24 #定义前缀列表, 允许以 30 开头, 且掩码长度在 8 位至 24 位的网络 bgp 1 router-id 2.2.2.2 peer 1.1.1.1 as-number 65001 peer 1.1.1.1 ebgp-max-hop 2 peer 1.1.1.1 connect-interface LoopBack0 peer 1.1.1.1 ip-prefix 1 export #在指向 1.1.1.1 的对等 体关系上配置前缀列表 1, 并指定为外出方向 peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

network 10.1.1.0 255.255.255.0

network 20.1.1.0 255.255.255.0

undo summary automatic

ip route-static 1.1.1.1 32 10.1.1.1

rip 1

version 2

network 20.0.0.0

network 2.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 7

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 30.1.1.0 255.255.255.0

undo summary automatic

ip route-static 4.4.4.4 32 30.1.1.2

rip 1

version 2

network 20.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view sysname RTD interface G0/0/1 ip address 30.1.1.2 24 interface LoopBack0 ip address 4.4.4.4 32 interface LoopBack1 ip address 192.168.1.1 24

interface LoopBack2

ip address 192.168.10.33 27

bgp 7

router-id 4.4.4.4

peer 3.3.3.3 as-number 1

peer 3.3.3.3 ebgp-max-hop 2

peer 3.3.3.3 connect-interface LoopBack0

network 192.168.1.0 255.255.255.0

network 192.168.10.32 255.255.255.224

undo summary automatic

ip route-static 3.3.3.3 32 30.1.1.1

二十四、配置 BGP 双向重发布实验组

二、实验目的:

RTA 与 RTB 运行 OSPF 路由选择协议, RTB 与 RTC 运行 BGP 路由选择协议, 在 RTB 上配置双向重发布,最终令 Client A 与 Client B 能够正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

东方瑞通 图 23

interface Loopback0 #创建环回接口 0 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路 由器 ID area 0 #创建 OSPF 区域 0 network 10.1.1.0 0.0.0.255 #通告其直连网段 network 192.168.1.0 0.0.0.255 #通告其直连网段

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.1 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2

import-route direct cost 1 #以 COST 值 1 的形式将直连

路由注入进 OSPF 路由协议

import-route bgp permit-ibgp cost 1 #以 COST 值 1 的 形式将 BGP 路由注入进 OSPF 路由协议,同时允许将 IBGP 路

由也注入进 OSPF 路由协议中

area 0

network 10.1.1.0 0.0.0.255

bgp 1 #开启 BGP 路由功能,并配置其 AS 号

router-id 2.2.2.2 #配置设备的 BGP 路由器 ID

peer 3.3.3.3 as-number 1 #指定对等体的路由器 ID, 以及

远程自治系统号码

peer 3.3.3.3 connect-interface LoopBack0 #指定自身

与对等体之间用哪个接口来承载更新

network 20.1.1.0 24 #通告其直连的网段

undo summary automatic #关闭自动汇总

import-route ospf 1 med 1 #将 OSPF 1 的路由条目以

MED 值 1 的方式注入进 BGP 路由协议

ip route-static 3.3.3.3 32 20.1.1.2 #配置静态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一跳接口地址)

RTC:

system-view sysname RTC interface G0/0/0 ip address 172.16.1.1 24 interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

network 20.1.1.0 255.255.255.0

network 172.16.1.0 255.255.255.0

undo summary automatic

ip route-static 2.2.2.2 32 20.1.1.1

二十五、配置 RSTP 实验组网

一、实验拓扑:
SWA
E0/0/1 Root
RSTP
E0/0/2
E0/0/1
E0/0/1</li

将 3 台交换机的生成树模式配置为 RSTP, 同时将 SWA 配置成 为根网桥;通过生成树的选举, 令 SWC 的 E0/0/2 端口被阻塞 掉;在其它主链路失效时,通过 RSTP 的帮助,令 SWC 的 E0/0/2 端口能够尽快恢复

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

stp priority 8192 #将 SWA 的 STP 优先级配置为 8192

Designer : Yiqian Hu

136 https://huawei.easthome.com/

东方瑞通 图 23

interface E0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

interface E0/0/2 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

SWB:

system-view sysname SWB stp mode rstp stp priority 24576 interface E0/0/1 port link-type trunk port trunk allow-pass vlan all interface E0/0/2 port link-type trunk port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

测试:

在 SWC 上查看生成树的端口角色与状态

二十六、配置 STP 边缘端口实验组网

二、实验目的:

将 SWA 配置为根网桥,将 SWC 的端口 E0/0/3 配置为边缘端口,令该端口在与终端主机相连时,立即进入转发状态

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

stp priority 8192 #将 SWA 的 STP 优先级配置为 8192

interface E0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

139 https://huawei.easthome.com/

VLAN 的信息

interface E0/0/2 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

SWB:

system-view

sysname SWB

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

stp edged-port enable

#在端口下开启边缘端口功能

二十七、配置 STP 根保护实验组网

一、实验拓扑:

二、实验目的:

将 SWA 配置为根网桥, SWD 通过端口 E0/0/1 与 SWC 的 E0/0/3 相连,由于 SWD 的网桥优先级相较于 SWA 更低(4096),因此 SWD 会抢占 SWA 的根网桥状态;为防止上述事件发生,需要在 SWC 上开启根防护,以阻止 SWD 成为新的根网桥

三、实验步骤:

SWA:

system-view #进入系统视图模式

东方瑞通 图 23

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

interface G0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

interface G0/0/2 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

stp priority 8192 #将 SWA 的 STP 优先级配置为 8192

SWB:

system-view

sysname SWB

stp mode rstp

interface G0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface G0/0/2

port link-type trunk

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

stp root-protection #在端口下开启根防护功能

SWD:

system-view sysname SWD stp mode rstp stp priority 4096 interface E0/0/1 port link-type trunk port trunk allow-pass vlan all

二十八、配置 STP BPDU 保护实验组

二、实验目的:

将 SWA 配置为根网桥, SWC 的 E0/0/3 端口连接终端主机 PC-A,在 SWC 上配置 BPDU 保护,以防止该端口错误的连接其它 网络设备 (如:交换机等)后接收到 BPDU,导致其产生临时环路,从而增加整体网络的计算工作量,并可能引起网络震荡

三、实验步骤:

SWA:

东方瑞通 图 23

system-view #进入系统视图模式

sysname SWA #给设备命名

stp mode rstp #将 STP 的工作模式配置为 RSTP

stp priority 4096 #将 SWA 的 STP 优先级配置为 4096

interface G0/0/1 #进入相应的端口

port link-type trunk #将端口配置为中继模式

port trunk allow-pass vlan all #允许该中继端口传递所有

VLAN 的信息

interface G0/0/2 #进入相应的端口 port link-type trunk #将端口配置为中继模式 port trunk allow-pass vlan all #允许该中继端口传递所有 VLAN 的信息

SWB:

system-view sysname SWB stp mode rstp interface G0/0/1 port link-type trunk port trunk allow-pass vlan all interface G0/0/2 port link-type trunk

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

stp mode rstp

stp bpdu-protection #开启 BPDU 保护机制

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

二十九、配置 STP 环路保护实验组网

二、实验目的:

将 SWA 配置为根网桥,当 SWA 的端口 E0/0/2 由于链路拥塞 或单向链路故障,导致 SWC 不能收到 SWA 发送的 BPDU 报文, 因此 SWC 将重新选择根端口;最初的根端口将变更为指定端口, 而阻塞端口则将进入转发状态,这将导致环路发生,因此需要在 SWC 的端口 E0/0/1 上开启环路保护机制,以防止上述事件发 生

三、实验步骤:

SWA:

system-view #进入系统视图模式

东方瑞通 图学习

sysname SWA #给设备命名 stp mode rstp #将 STP 的工作模式配置为 RSTP stp priority 4096 #将 SWA 的 STP 优先级配置为 4096 interface E0/0/1 #进入相应的端口 port link-type trunk #将端口配置为中继模式 port trunk allow-pass vlan all #允许该中继端口传递所有 VLAN 的信息 interface E0/0/2 #进入相应的端口 port link-type trunk #将端口配置为中继模式 port trunk allow-pass vlan all #允许该中继端口传递所有 VLAN 的信息

SWB: system-view sysname SWB stp mode rstp interface E0/0/1 port link-type trunk port trunk allow-pass vlan all interface E0/0/2 port link-type trunk port trunk allow-pass vlan all

Designer : Yiqian Hu

149 https://huawei.easthome.com/

SWC:

system-view

sysname SWC

stp mode rstp

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

stp loop-protection #在端口下开启环路保护机制

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

三十、配置 MSTP 实验组网

一、实验拓扑:

二、实验目的:

通过 MSTP 的配置, 令 SWB 成为 VLAN 1 – 10 的主根网桥, 成为 VLAN 11 – 20 的备根网桥; 同时令 SWC 成为 VLAN 11 – 20 的主根网桥, 成为 VLAN 1 – 10 的备根网桥

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

vlan batch 2 to 20 #创建 VLAN 2 到 20

东方瑞通 图学习

stp mode mstp #将 STP 的工作模式配置为 MSTP		
stp region-configuration #进入 STP 范围配置模式		
region-name easthome #配置该范围的名字		
revision-level 0 #配置该范围的版本		
instance 1 vlan 1 to 10 #将 VLAN 1 到 10 映射到实例 1		
instance 2 vlan 11 to 20		
例 2		
active region-configuration #将范围配置开启		
interface E0/0/1 #进入相应的端口		
port link-type trunk #将端口配置为中继模式		
port trunk allow-pass vlan all #允许该中继端口传递所有		
VLAN 的信息		
interface E0/0/2 <mark>#进入相应的端口</mark>		
port link-type trunk #将端口配置为中继模式		
port trunk allow-pass vlan all #允许该中继端口传递所有		
VLAN 的信息		
SWB:		
system-view		

sysname SWB

vlan batch 2 to 20

stp mode mstp

#设置该网桥为实例

#设置该网桥为实例 2 的

的主

stp region-configuration

region-name *easthome*

revision-level 0

instance 1 vlan 1 to 10

instance 2 vlan 11 to 20

active region-configuration

stp instance 1 root primary

根网桥

stp instance 2 root secondary

备根网桥

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

Designer : Yiqian Hu

stp edged-port enable #将该接口配置为边缘模式

port link-type access #将端口的链路类型配置为接入模

式

port default vlan 10 #将该端口加入进 VLAN 10

SWC:

system-view

sysname SWC

vlan 2 to 20

stp mode mstp

stp region-configuration

region-name *easthome*

revision-level O

instance 1 vlan 1 to 10

instance 2 vlan 11 to 20

active region-configuration

stp instance 1 root secondary

stp instance 2 root primary

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/3

stp edged-port enable

port link-type access

port default vlan 20

测试:

在 SWB 上查看生成树中端口的角色与状态

MSTID	Port	Role	STP State	Protection
0	Ethernet0/0/1	DESI	FORWARDING	NONE
0	Ethernet0/0/2	DESI	FORWARDING	NONE
0	Ethernet0/0/3	DESI	FORWARDING	NONE
1	Ethernet0/0/1	DESI	FORWARDING	NONE
1	Ethernet0/0/2	DESI	FORWARDING	NONE
1	Ethernet0/0/3	DESI	FORWARDING	NONE
2	Ethernet0/0/1	ROOT	FORWARDING	NONE
2	Ethernet0/0/2	DESI	LEARNING	NONE
[SWB]				

在 SWC 上查看生成树中端口的角色与状态

[SWC]di	splay stp brief			
MSTID	Port	Role	STP State	Protection
0	Ethernet0/0/1	DESI	FORWARDING	NONE
0	Ethernet0/0/2	ROOT	FORWARDING	NONE
0	Ethernet0/0/3	DESI	FORWARDING	NONE
1	Ethernet0/0/1	DESI	FORWARDING	NONE
1	Ethernet0/0/2	ROOT	FORWARDING	NONE
2	Ethernet0/0/1	DESI	FORWARDING	NONE
2	Ethernet0/0/2	DESI	FORWARDING	NONE
2	Ethernet0/0/3	DESI	FORWARDING	NONE
[SWC]				

一、实验拓扑:

二、实验目的:

通过三层交换的配置,令不同 VLAN 间的主机能够相互通信

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

- vlan 2 #创建 VLAN 2
- vlan 3 #创建 VLAN 3
- vlan 4 #创建 VLAN 4
- vlan 5 #创建 VLAN 5
- interface vlan 2 #进入 VLAN 2 接口

东方瑞通[®] 图 第3

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码
interface vlan 3 #进入 VLAN 3 接口
ip address 30.1.1.1 24 #配置 IP 地址及子网掩码
interface vlan 4 #进入 VLAN 4 接口
ip address 40.1.1.1 24 #配置 IP 地址及子网掩码
interface vlan 5 #进入 VLAN 5 接口
ip address 50.1.1.1 24 #配置 IP 地址及子网掩码
interface G0/0/2 #进入相应端口
port link-type access #将端口配置为接入模式
port default vlan 2 #将端口加入进 VLAN 2
interface G0/0/3 <mark>#进入相应端口</mark>
port link-type access #将端口配置为接入模式
port default vlan 3 #将端口加入进 VLAN 3
interface G0/0/4 <mark>#进入相应端口</mark>
port link-type access #将端口配置为接入模式
port default vlan 4 #将端口加入进 VLAN 4
interface G0/0/5 #进入相应端口
port link-type access #将端口配置为接入模式
port default vlan 5 #将端口加入进 VLAN 5

三十二、配置 DHCP 接口地址池实验 组网

二、实验目的:

通过配置 DHCP 接口地址池, 令 PC-A、PC-B、PC-C 可以获得 与 RTA 的 G0/0/0 接口 IP 地址同网段的 IP 地址

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

dhcp enable #开启 DHCP 功能

interface G0/0/0 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

dhcp select interface #配置 DHCP 的工作模式为接口模

式

dhcp server excluded-ip-address 192.168.1.2 #配置在

分配地址时排除的地址

dhcp server dns-list 202.106.49.151 #配置分配的 DNS

地址

dhcp server lease day 8 #配置 DHCP 的地址租期

三十三、配置 DHCP 全局地址池实验

组网

二、实验目的:

通过配置 DHCP 全局地址池, 令 PC-A、PC-B、PC-C 分别从 3 个不同的地址池获取不同网段的 IP 地址,并能够实现互访

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

dhcp enable #开启 DHCP 功能

ip pool VLAN2 #创建地址池并命名

network 10.1.1.0 mask 24 #配置地址池内可分配的地址段

及掩码

gateway-list 10.1.1.1 #配置分配的网关地址

东方瑞通 图 23

dns-list 202.106.49.151 #配置分配的 DNS 地址 lease day 8 #配置 DHCP 的地址租期 ip pool VLAN3 #创建地址池并命名 network 20.1.1.0 mask 24 #配置地址池内可分配的地址段 及掩码 gateway-list 20.1.1.1 #配置分配的网关地址 dns-list 202.106.49.151 #配置分配的 DNS 地址 lease day 8 #配置 DHCP 的地址租期 ip pool VLAN4 #创建地址池并命名 network 30.1.1.0 mask 24 #配置地址池内可分配的地址段 及掩码 gateway-list 30.1.1.1 #配置分配的网关地址 dns-list 202.106.49.151 / #配置分配的 DNS 地址 lease day 8 #配置 DHCP 的地址租期 interface G0/0/0.1 #进入第1个子接口 dot1g termination vid 2 #配置其 VLAN 的封装方式为 802.1Q, 并且令该子接口为 VLAN 2 的主机提供路由转发服务 ip address 10.1.1.1 24 #配置接口的 IP 地址及子网掩码 arp broadcast enable #在子接口下开启 ARP 广播功能 dhcp select global #配置 DHCP 的工作模式为全局模式 interface G0/0/0.2 #进入第 2 个子接口 dot1q termination vid 3 #配置其 VLAN 的封装方式为

161 https://huawei.easthome.com/

东方瑞通[®] 图型学习 Grundelin 1998

802.1Q,并且令该子接口	コ为 VLAN 3 的主机提供路由转发服务
ip address 20.1.1.1 24	#配置接口的 IP 地址及子网掩码
arp broadcast enable	#在子接口下开启 ARP 广播功能
dhcp select global	#配置 DHCP 的工作模式为全局模式
interface G0/0/0.3	#进入第2个子接口
dot1q termination vid	4 #配置其 VLAN 的封装方式为
802.1Q,并且令该子接口	コ为 VLAN 3 的主机提供路由转发服务
ip address 30.1.1.1 24	#配置接口的 IP 地址及子网掩码
arp broadcast enable	#在子接口下开启 ARP 广播功能
dhcp select global	#配置 DHCP 的工作模式为全局模式

SWA:

system-view

sysname SWA

vlan 2

vlan 3

vlan 4

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type access

port default vlan 2

interface E0/0/3

port link-type access

port default vlan 3

interface E0/0/4

port link-type access

port default vlan 4

三十四、配置 DHCP 中继代理实验组

二、实验目的:

将 RTA 配置为 DHCP 服务器,在 SWA 与 SWB 上配置并启用 DHCP 中继代理,令 RTA 给 VLAN 2 中的 Client A 分配 192.168.1.0/24 网段的地址,给 VLAN 3 中的 Client B 分配 172.16.1.0/24 网段的地址

三、实验步骤:

RTA:

system-view #进入系统视图模式

东方瑞通 图 27

sysname RTA #给设备命名 dhcp enable #开启 DHCP 功能 ip pool VLAN2 #创建地址池并命名 network 192.168.1.0 mask 24 #配置地址池内可分配的地 址段及掩码 gateway-list 192.168.1.1 #配置分配的网关地址 dns-list 202.106.49.151 #配置分配的 DNS 地址 lease day 8 #配置 DHCP 的地址租期 ip pool VLAN3 #创建地址池并命名 network 172.16.1.0 mask 24 #配置地址池内可分配的地 址段及掩码 gateway-list 172.16.1.1 #配置分配的网关地址 dns-list 202.106.0.20 #配置分配的 DNS 地址 lease day 8 #配置 DHCP 的地址租期 interface G0/0/0 #进入相应接口 ip address 10.1.1.1 24 #配置接口的 IP 地址及子网掩码 dhcp select global #配置 DHCP 的工作模式为全局模式 rip version 2 network 10.0.0.0 undo summary https://huawei.easthome.com/ Designer : Yiqian Hu 165

SWA:

system-view

sysname SWA

dhcp enable

vlan 2

vlan 10

vlan 20

interface vlan 2 #进入 vlan 2 接口

ip address 192.168.1.1 24

dhcp select relay #开启 DHCP 中继代理功能

dhcp relay server-ip 10.1.1.1 #指定 DHCP 服务器 IP 地

圵

interface vlan 10

ip address 10.1.1.2 24

interface vlan 20

ip address 20.1.1.1 24

interface G0/0/1

port link-type access

port default vlan 10

interface G0/0/2

port link-type access

port default vlan 20

interface G0/0/3

port link-type trunk

port trunk allow-pass vlan all

rip

version 2

network 10.0.0.0

network 20.0.0.0

network 192.168.1.0

undo summary

SWB:

system-view

sysname SWB

dhcp enable

vlan 3

vlan 20

interface vlan 3

ip address 172.16.1.1 24

dhcp select relay

dhcp relay server-ip 10.1.1.1

interface vlan 20

ip address 20.1.1.2 24

interface G0/0/1

port link-type access

port default vlan 20

interface G0/0/2

port link-type trunk

port trunk allow-pass vlan all

rip

version 2

network 20.0.0.0

network 172.16.0.0

undo summary

SWC:

system-view

sysname SWC

vlan 2

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type access

port default vlan 2

SWD:

system-view

sysname SWD

vlan 3

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type access

port default vlan 3

三十五、配置 DHCP Snooping 实验 组网

一、实验拓扑:

二、实验目的:

将 RTA 与 RTB 均配置为基于接口的 DHCP 服务器,在 SWA 上配置并启用 DHCP Snooping 功能,令其信任端口 E0/0/1 所连接的 RTA,并让 Client A 成功获取 192.168.1.0/24 网段的地址; 在 RTA 或与 RTA 相连的链路失效后,不让 Client A 从 RTB 获取 IP 地址 (即:不信任 RTB);同时启用 IPSG 功能,防止攻击者仿冒合法的源 IP 地址进行攻击

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

Designer : Yiqian Hu

170 https://huawei.easthome.com/

ł	东方瑞通 [®] 图号》
dhcp enable #开启 DHCP 功能	
interface G0/0/0 #进入相应接口	
ip address 192.168.1.1 24 #配置 II	P 地址及子网掩码
dhcp select interface #配置 DHC	CP 的工作模式为接口模
式	
dhcp server dns-list 202.106.49.151	#配置分配的 DNS
地址	
dhcp server lease day 8 #配置 D	DHCP 的地址租期
RTB:	
system-view	
sysname RTB	
dhcp enable	
interface G0/0/0	
ip address 172.16.1.1 24	
dhcp select interface	
dhcp server dns-list 202.106.0.20	
dhcp server lease day 8	

SWA:

system-view

sysname SWA

#开启 DHCP Snooping 功能

dhcp enable

dhcp snooping enable

interface E0/0/1

dhcp snooping enable #在端口下开启 DHCP Snooping

功能

dhcp snooping trusted

认模式为非信任模式)

interface E0/0/2

dhcp snooping enable

功能

#在端口下开启 DHCP Snooping

#将当前端口配置为信任模式 (默

ip source check user-bind enable #启用 IPSG 功能,防

止攻击者仿冒合法源 IP 地址进行攻击

三十六、配置端口安全实验组网

一、实验拓扑:

二、实验目的:

将 SWA 的端口 E0/0/1 – E0/0/4 配置端口安全,并手工绑定其 所连接的主机终端的 MAC 地址,之后将端口 E0/0/1 与未授权 绑定终端 Client E 相连,检测其是否可以与其它终端通讯

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

interface E0/0/1 #进入相应端口

port-security enable #开启端口安全功能

port-security max-mac-num 1

#配置该端口最多可学习

1个 MAC 地址

port-security mac-address sticky #开启手工配置 MAC

地址模式

port-security mac-address sticky 5489-9824-323A vlan 1

#手工输入该端口绑定的 MAC 地址与其所属的 VLAN ID port-security protect-action shutdown #配置当该端口 连接了其它未授权设备时执行的动作为 shutdown interface E0/0/2 #进入相应端口 port-security enable #开启端口安全功能 port-security max-mac-num 1 #配置该端口最多可学习 1个 MAC 地址 port-security mac-address sticky #开启手工配置 MAC 地址模式

port-security mac-address sticky 5489-984C-74A5 vlan 1

#手工输入该端口绑定的 MAC 地址与其所属的 VLAN ID
port-security protect-action shutdown #配置当该端口
iterface E0/0/3 #进入相应端口
port-security enable #开启端口安全功能
port-security max-mac-num 1 #配置该端口最多可学习
1个 MAC 地址

东方瑞通[®] 图 考习 Gundedin 1998

port-security mac-address sticky #开启手工配置 MAC 地址模式

port-security mac-address sticky 5489-9813-4A9B vlan 1

#手工输入该端口绑定的 MAC 地址与其所属的 VLAN ID port-security protect-action shutdown #配置当该端口 连接了其它未授权设备时执行的动作为 shutdown interface E0/0/4 #进入相应端口 port-security enable #开启端口安全功能 port-security max-mac-num 1 #配置该端口最多可学习 1个 MAC 地址 port-security mac-address sticky #开启手工配置 MAC 地址模式

port-security mac-address sticky 5489-98D8-2CCB vlan 1

#手工输入该端口绑定的 MAC 地址与其所属的 VLAN ID port-security protect-action shutdown #配置当该端口 连接了其它未授权设备时执行的动作为 shutdown

注:

当配置了端口安全的端口连接过非授权主机后,该端口将会被 shutdown,无法正常通讯,此时,即便再将该端口重新连接回 原先的授权主机,该端口依旧无法正常通讯;需通知管理人员, 在该端口下手动执行命令【restart】,方可令该端口重新恢复至

转发状态

[Huawei]interface E0/0/1

[Huawei-Ethernet0/0/1]restart

三十七、配置二层隔离三层互通的端口

隔离实验组网

一、实验拓扑:

二、实验目的:

将 SWA 的隔离端口模式配置为二层隔离三层互通模式,再将 E0/0/3 与 E0/0/4 端口配置为隔离端口,测试 Client A 与 Client B 是否能通讯,以及 Client B 与 Client C 是否能通讯;之后在 SWA 上为 VLAN 10 配置管理 IP 地址;再次测试 Client A 与 Client B 是否能通讯,以及 Client B 与 Client C 是否能通讯

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

vlan 10 #创建 VLAN 10

port-isolate mode l2 #配置设备的隔离端口模式为二层隔 离三层互通

interface E0/0/1 #进入相应端口

port link-type trunk #将端口类型配置为中继模式

port trunk allow-pass vlan all #配置允许中继链路传递所

有 VLAN 标记的数据帧

interface E0/0/2 #进入相应端口

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

interface E0/0/3 #进入相应端口

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

port-isolate enable group 1 #开启隔离端口功能

interface E0/0/4 #进入相应端口

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

port-isolate enable group 1 #开启隔离端口功能

interface E0/0/5 <mark>#进入相应端口</mark>

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

SWB:

system-view

sysname SWB

vlan 10

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

vlan 10

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type access

port default vlan 10

interface E0/0/3

port link-type access

port default vlan 10

interface E0/0/4

port link-type access

port default vlan 10

测试:

Client A 与 Client B 可正常通讯

Client B 与 Client C 无法正常通讯

PC2						_ =
基础配置	命令行	组播	UDP发包工具	串口		
Welcome t	o use PC S	imulator	:!			
Coning 1	92 168 1 30	1				
o ping i						
Ping 192.	168.1.30: 3	32 data	bytes, Pres	ss Ctrl_C	to break	
From 192.	168.1.20: 1	Destinat	ion host ur	ireachable		
From 192.	168.1.20: 1	Destinat	ion host un	reachable		
From 192.	168.1.20: 1	Destinat	ion host ur	reachable	e	
From 192.	168.1.20: 1	Destinat	ion host ur	nreachable	e	
5 packe 0 packe 100.00%	t(s) trans t(s) receiv packet los	nitted ved ss				
PC>						

之后在 SWA 上为 VLAN 10 配置管理 IP 地址,并将该地址配置

为所有 Client 的网关

SWA:

interface vlan 10

ip add 192.168.1.1 24

arp-proxy inner-sub-vlan-proxy enable #开启同 VLAN

内 ARP 代理功能

再次测试:

Client A 与 Client B 依旧可以正常通讯

E PC1	
基础 a a a a a a a a a a a a a a a a a a a	
From 192.168.1.20: bytes=32 seq=3 ttl=128 time=47 ms	^
From 192.168.1.20: bytes=32 seq=4 ttl=128 time=31 ms From 192.168.1.20: bytes=32 seq=5 ttl=128 time=31 ms	
192.168.1.20 ping statistics	
5 packet(s) received	
0.00% packet loss	
round-trip min/avg/max = 31/43/63 ms	
PC>ping 192.168.1.20	
Ping 192.168.1.20: 32 data bytes, Press Ctrl C to break From 192.168.1.20: butes=32 seg=1 $\pm\pm1=128$ $\pm im==47$ ms	
From 192.168.1.20: bytes=32 seq=1 tt1=128 time=31 ms	
From 192.168.1.20: bytes=32 seq=3 ttl=128 time=32 ms	
From 192.168.1.20: bytes=32 seq=4 ttl=128 time=47 ms	
110m 152,100,1.20. bytes 52 seq 5 tot 120 time 17 ms	
192.168.1.20 ping statistics	
5 packet(s) transmitted	
0.00% packet loss	
round-trip min/avg/max = $31/40/47$ ms	
	¥

Client B 与 Client C 此时亦可正常通讯

E PC2	-	х
基础配置 命令行 组播 UDP发包工具 串口		
From 192.168.1.30: bytes=32 seq=3 ttl=127 time=63 ms		^
From 192.168.1.30: bytes=32 seq=4 ttl=127 time=47 ms		
From 192.168.1.30: bytes=32 seq=5 tt1=127 time=47 ms		
192.168.1.30 ping statistics		
5 packet(s) transmitted		
5 packet(s) received		
0.00% packet loss		
round-trip min/avg/max = 32/50/63 ms		
PC>ping 192.168.1.30		
Ping 192.168.1.30: 32 data bytes, Press Ctrl_C to break		
From 192.168.1.30: bytes=32 seq=1 tt1=127 time=47 ms		
From 192.168.1.30: bytes=32 seg=3 ttl=127 time=37 ms		
From 192.168.1.30: bytes=32 seq=4 ttl=127 time=47 ms		
From 192.168.1.30: bytes=32 seq=5 ttl=127 time=47 ms		
192.168.1.30 ping statistics		
5 packet(s) received		
0.00% packet loss		
round-trip min/avg/max = 31/43/47 ms		
503		
		~

三十八、配置二层三层均隔离的端口隔

离实验组网

-、实验拓扑: SWB E0/0/1 E0/0/1 E0/0/1 ÷ SWC SWA E0/0/2/E0/p/3 E0/0/5 E0/0/2 E0/0/4 E0/0 EQ/0/4 Network 192.168.1.0/24 Client D Client E Client F Client G Client A Client B Client C **VLAN 10 VLAN 10 VLAN 10 VLAN 10 VLAN 10 VLAN 10 VLAN 10** isolate port isolate port

二、实验目的:

将 SWA 的隔离端口模式配置为二层三层均隔离模式,再将 E0/0/3 与 E0/0/4 端口配置为隔离端口,测试 Client A 与 Client B 是否能通讯,以及 Client B 与 Client C 是否能通讯;之后在 SWA 上为 VLAN 10 配置管理 IP 地址;再次测试 Client A 与 Client B 是否能通讯,以及 Client B 与 Client C 是否能通讯

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

vlan 10 #创建 VLAN 10

port-isolate mode all #配置设备的隔离端口模式为二层 三层均隔离

interface E0/0/1 #进入相应端口

port link-type trunk #将端口类型配置为中继模式

port trunk allow-pass vlan all #配置允许中继链路传递所

有 VLAN 标记的数据帧

interface E0/0/2 #进入相应端口

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

interface E0/0/3 #进入相应端口

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

port-isolate enable group 1 #开启隔离端口功能

interface E0/0/4 #进入相应端口

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

port-isolate enable group 1 #开启隔离端口功能

interface E0/0/5 #进入相应端口

port link-type access #将端口类型配置为接入模式

port default vlan 10 #将端口加入 VLAN 10

SWB:

system-view

sysname SWB

vlan 10

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type trunk

port trunk allow-pass vlan all

SWC:

system-view

sysname SWC

vlan 10

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type access

port default vlan 10

interface E0/0/3

port link-type access

port default vlan 10

interface E0/0/4

port link-type access

port default vlan 10

测试:

Client A 与 Client B 可正常通讯

Client B 与 Client C 无法正常通讯

基础回语命令行组播UDP发包工具串口Welcome to use PC Simulator!PC>ping 192.168.1.30Ping 192.168.1.30: 32 data bytes, Press Ctrl_C to breakFrom 192.168.1.20: Destination host unreachableFrom 192.168.1.30 ping statistics5 packet(s) transmitted0 packet(s) received100.00% packet loss	
<pre>Welcome to use PC Simulator! PC>ping 192.168.1.30 Ping 192.168.1.30: 32 data bytes, Press Ctrl_C to break From 192.168.1.20: Destination host unreachable From 192.168.1.20: Destination host unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss</pre>	
<pre>C>ping 192.168.1.30 ring 192.168.1.30: 32 data bytes, Press Ctrl_C to break rom 192.168.1.20: Destination host unreachable rom 192.168.1.20: Destination host unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss</pre>	
Program 192.168.1.30: 32 data bytes, Press Ctrl_C to break From 192.168.1.20: Destination host unreachable From 192.168.1.20: Destination host unreachable From 192.168.1.20: Destination host unreachable From 192.168.1.20: Destination host unreachable From 192.168.1.20: Destination host unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss	
<pre>ing 192.168.1.30: 32 data bytes, Press Ctrl_C to break rom 192.168.1.20: Destination host unreachable rom 192.168.1.20: Destination host unreachable rom 192.168.1.20: Destination host unreachable rom 192.168.1.20: Destination host unreachable rom 192.168.1.20: Destination host unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss</pre>	
<pre>Form 192.168.1.20: Destination host unreachable Form 192.168.1.20: Destination host unreachable Form 192.168.1.20: Destination host unreachable Form 192.168.1.20: Destination host unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss</pre>	
<pre>rom 192.168.1.20: Destination host unreachable rom 192.168.1.20: Destination host unreachable rom 192.168.1.20: Destination host unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss</pre>	
<pre>'rom 192.168.1.20: Destination host unreachable 'rom 192.168.1.20: Destination host unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss</pre>	
192.168.1.20: Destination nost unreachable 192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss	
192.168.1.30 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss	
5 packet(s) transmitted 0 packet(s) received 100.00% packet loss	
0 packet(s) received 100.00% packet loss	
100.00% packet 1035	
PC>	

之后在 SWA 上为 VLAN 10 配置管理 IP 地址,并将该地址配置

为所有 Client 的网关

SWA:

interface vlan 10

ip add 192.168.1.1 24

arp-proxy inner-sub-vlan-proxy enable #开启同 VLAN

内 ARP 代理功能

再次测试:

Client A 与 Client B 依旧可以正常通讯

EPC1	_ □ X
基础 間證 命令行 组播 UDP发包工具 串口	
From 192.168.1.20: bytes=32 seq=3 ttl=128 time=47	ms ^
From 192.168.1.20: bytes=32 seq=5 ttl=128 time=31	ms
192.168.1.20 ping statistics	
5 packet(s) transmitted	
0.00% packet loss	
round-trip min/avg/max = 31/43/63 ms	
PC>ping 192.168.1.20	
Ping 192.168.1.20: 32 data bytes. Press Ctrl C to	break
From 192.168.1.20: bytes=32 seq=1 ttl=128 time=47	ms
From 192.168.1.20: bytes=32 seq=2 ttl=128 time=31	ms
From 192.168.1.20: bytes=32 seq=3 tt1=128 time=32 From 192.168.1.20: bytes=32 seq=4 tt1=128 time=47	ms
From 192.168.1.20: bytes=32 seq=5 ttl=128 time=47	ms
192.168.1.20 ping statistics	
5 packet(s) transmitted	
5 packet(s) received 0.00% packet loss	
round-trip min/avg/max = 31/40/47 ms	
PC>	

Client B 与 Client C 此时依旧无法正常通讯

E PC2	_ =	X
基础配置 命令行 组播 UDP发包工具 串口		
Request timeout!		^
Request timeout!		
Request timeout!		
Request timeout!		
5 packet(s) transmitted		
0 packet(s) received		
100.00% packet loss		
PC>ping 192 168 1 30		
Isping Istriction		
Ping 192.168.1.30: 32 data bytes, Press Ctrl_C to break		
Request timeout!		
192 168 1 20 pipg statistics		
5 packet(s) transmitted		
0 packet(s) received		
100.00% packet loss		
DON		
		*

三十九、配置 MUX VLAN 实验组网

一、实验拓扑:

二、实验目的:

将 VLAN 40 配置为 Principal VLAN, VLAN 10 与 VLAN 20 配 置为 Group VLAN, VLAN 30 配置为 Separate VLAN, 令 VLAN 10 内终端可相互访问, VLAN 20 内终端可相互访问, VLAN 30 内终端彼此之间不可相互访问, 同时与 VLAN 10 和 VLAN 20 内的终端也不可相互访问, 但所有终端均可与 VLAN 40 内的 Server 相互访问

三、实验步骤:

SWA:

system-view #进入系统视图模式

sysname SWA #给设备命名

vlan 10 #创建 VLAN 10 vlan 20 #创建 VLAN 20 vlan 30 #创建 VLAN 30 vlan 40 #创建 VLAN 40 #将 VLAN 40 配置为主 VLAN mux-vlan subordinate group 10 20 #关联互通型 VLAN 10 和 20 subordinate separate 30 #关联隔离型 VLAN 40 interface E0/0/1 #进入相应端口 #将端口类型配置为中继模式 port link-type trunk port trunk allow-pass vlan all #配置允许中继链路传递所 有 VLAN 标记的数据帧 interface E0/0/2 #进入相应端口 #将端口类型配置为接入模式 port link-type access port default vlan 10 #将端口加入 VLAN 10 port mux-vlan enable #在端口下开启 MUX VLAN 功能 interface E0/0/3 #进入相应端口 port link-type access #将端口类型配置为接入模式 port default vlan 10 #将端口加入 VLAN 10 port mux-vlan enable #在端口下开启 MUX VLAN 功能 interface E0/0/4 #进入相应端口 #将端口类型配置为接入模式 port link-type access port default vlan 20 #将端口加入 VLAN 20

190 https://huawei.easthome.com/

东方瑞通

终月日

port mux-vlan enable #在端口下开启 MUX VLAN 功能
interface E0/0/5 <mark>#进入相应端口</mark>
port link-type access #将端口类型配置为接入模式
port default vlan 20 #将端口加入 VLAN 20
port mux-vlan enable #在端口下开启 MUX VLAN 功能
SWB:
system-view
sysname SWB
vlan 10
vlan 20
vlan 30
vlan 40
mux-vlan
subordinate group 10 20
subordinate separate 30
interface E0/0/1
port link-type trunk
port trunk allow-pass vlan all
interface E0/0/2
port link-type trunk
port trunk allow-pass vlan all

interface E0/0/3

port link-type access

port default vlan 40

port mux-vlan enable

SWC:

system-view

sysname SWC

vlan 10

vlan 20

vlan 30

vlan 40

mux-vlan

subordinate group 10 20

subordinate separate 30

interface E0/0/1

port link-type trunk

port trunk allow-pass vlan all

interface E0/0/2

port link-type access

port default vlan 30

port mux-vlan enable

interface E0/0/3

port link-type access

port default vlan 30

port mux-vlan enable

interface E0/0/4

port link-type access

port default vlan 30

port mux-vlan enable

interface E0/0/5

port link-type access

port default vlan 30

port mux-vlan enable

测试:

VLAN 10 内的 Client A 与 Client B 可相互访问

E PC9						_	
基础配置	命令行	组播	UDP发包工具	串口	Ĩ		
From 192. From 192. From 192.	168.1.2: b 168.1.2: b 168.1.2: b	ytes=32 ; ytes=32 ; ytes=32 ;	seq=3 ttl=1 seq=4 ttl=1 seq=5 ttl=1	28 time= 28 time= 28 time=	63 ms 32 ms 63 ms		^
192.1 5 packe 5 packe 0.00% p round-t	68.1.2 pin t(s) trans t(s) recei acket loss rip min/av	g statis mitted ved g/max = :	tics 32/50/63 ms				
PC>ping 1	92.168.1.2						
Ping 192. From 192. From 192. From 192. From 192. From 192.	168.1.2: 3 168.1.2: b 168.1.2: b 168.1.2: b 168.1.2: b 168.1.2: b 168.1.2: b	2 data by ytes=32 s ytes=32 s ytes=32 s ytes=32 s ytes=32 s	ytes, Press seq=1 ttl=1 seq=2 ttl=1 seq=3 ttl=1 seq=4 ttl=1 seq=5 ttl=1	Ctrl_C 28 time= 28 time= 28 time= 28 time= 28 time=	to break 46 ms 16 ms 63 ms 47 ms 62 ms		
192.1 5 packe 5 packe 0.00% p round-t PC>	68.1.2 pin t(s) trans t(s) recei acket loss rip min/av	g statis mitted ved g/max = :	tics 16/46/63 ms	2			~

VLAN 20 内的 Client C 与 Client D 可相互访问

EPC11	_ 🗆 X
基础 and	
From 192.168.1.4: bytes=32 seq=3 ttl=128 time=47 ms From 192.168.1.4: bytes=32 seg=4 ttl=128 time=47 ms	^
From 192.168.1.4: bytes=32 seq=5 ttl=128 time=31 ms	
192.168.1.4 ping statistics	
5 packet(s) transmitted 5 packet(s) received	
0.00% packet loss	
round-trip min/avg/max = 31/43/47 ms	
PC>ping 192.168.1.4	
Dire 192 169 1 4, 22 data butan Drana Ctal C ta burah	
From 192.168.1.4: bytes=32 seg=1 ttl=128 time=31 ms	
From 192.168.1.4: bytes=32 seq=2 ttl=128 time=47 ms	
From 192.168.1.4: bytes=32 seq=3 ttl=128 time=62 ms	
From 192.168.1.4: bytes=32 seq=4 ttl=128 time=47 ms	
From 192.168.1.4: bytes=32 seq=5 ttl=128 time=46 ms	
192.168.1.4 ping statistics	
5 packet(s) transmitted	
5 packet(s) received	
round-trip min/avg/max = $31/46/62$ ms	
PC>	~
	the second s

VLAN 10 内的 Client A 与 VLAN 20 内的 Client C 无法互访

E PC9						_ 🗆 X
基础配置	命令行	组播	UDP发包工具	串口		
From 192. From 192. From 192. From 192. From 192.	168.1.1: De 168.1.1: De 168.1.1: De 168.1.1: De 168.1.1: De	estinati estinati estinati estinati	on host unr on host unr on host unr on host unr on host unr	eachable eachable eachable eachable eachable		^
192.1 5 packe 0 packe 100.00%	68.1.3 pind t(s) transm t(s) receiv packet los	g statis nitted ved ss	tics			
PC>ping 1 Ping 192. From 192. From 192. From 192. From 192. From 192.	92.168.1.3 168.1.3: 3 168.1.1: De 168.1.1: De 168.1.1: De 168.1.1: De 168.1.1: De	2 data b estinati estinati estinati estinati	ytes, Press on host unr on host unr on host unr on host unr on host unr	Ctrl_C to eachable eachable eachable eachable eachable eachable	break	
192.1 5 packe 0 packe 100.00% PC>	68.1.3 ping t(s) transm t(s) receiv packet los	g statis nitted ved ss	vtics			>

VLAN 30 内的所有 Client 均不可相互访问

E PC13	_ 0	X
基础面置 命令行 组播 UDP发包工具 串口		
From 192.168.1.5: Destination host unreachable From 192.168.1.5: Destination host unreachable		^
From 192.168.1.5: Destination host unreachable		
From 192.168.1.5: Destination host unreachable		
192.168.1.6 ping statistics		
5 packet(s) transmitted 0 packet(s) received		
100.00% packet loss		
PC>ping 192.168.1.6		
Ping 192.168.1.6: 32 data bytes, Press Ctrl_C to break		
From 192.168.1.5: Destination host unreachable From 192.168.1.5: Destination host unreachable		
From 192.168.1.5: Destination host unreachable		
From 192.168.1.5: Destination host unreachable		
192.168.1.6 ping statistics		
5 packet(s) transmitted 0 packet(s) received		
100.00% packet loss		
PC>		~

VLAN 10 内的 Client A 与 VLAN 30 内的 Client E 不可互访

E PC9	_ 🗆 X
基础配置 命令行 组播 UDP发包工具 串口	
From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable	^
192.168.1.5 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss	
Ping 192.168.1.5: 32 data bytes, Press Ctrl_C to break From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable From 192.168.1.1: Destination host unreachable	
192.168.1.5 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss PC>	~

VLAN 20 内的 Client C 与 VLAN 30 内的 Client E 不可互访

EPC11 _ 🗆 X
基础 間置 命令行 组播 UDP发包工具 串口
From 192.168.1.3: Destination host unreachable
From 192.168.1.3: Destination host unreachable
From 192.166.1.3. Destination host unreachable
From 192.168.1.3: Destination host unreachable
192.168.1.5 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss
PC>ping 192.168.1.5
Ping 192.168.1.5: 32 data bytes, Press Ctrl_C to break
From 192.168.1.3: Destination host unreachable
From 192.168.1.3: Destination host unreachable
From 192.166.1.3. Destination host unreachable
From 192.168.1.3: Destination host unreachable
192.168.1.5 ping statistics 5 packet(s) transmitted 0 packet(s) received 100.00% packet loss

VLAN 10 内的 Client A 与 VLAN 40 内的 Server 可相互访问

E PC9
基础配置 命令行 组播 UDP发包工具 串口
From 192.168.1.254: bytes=32 seq=3 ttl=128 time=78 ms
From 192.168.1.254: bytes=32 seq=4 ttl=128 time=109 ms From 192.168.1.254: bytes=32 seq=5 ttl=128 time=31 ms
192.168.1.254 ping statistics
5 packet(s) received
0.00% packet loss
Found-trip min/avg/max = 31/84/110 ms
PC>ping 192.168.1.254
Ping 192.168.1.254: 32 data bytes, Press Ctrl C to break
From 192.168.1.254: bytes=32 seq=1 ttl=128 time=94 ms
From 192.168.1.254: bytes=32 seq=2 tt1=128 time=109 ms From 192.168.1.254: bytes=32 seq=3 tt1=128 time=125 ms
From 192.168.1.254: bytes=32 seq=4 ttl=128 time=109 ms
From 192.168.1.254: bytes=32 sed=5 tt1=128 time=78 ms
192.168.1.254 ping statistics
5 packet(s) transmitted 5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 78/103/125 ms
PC>

VLAN 20 内的 Client C 与 VLAN 40 内的 Server 可相互访问

E PC11	
基础配置 命令行 组播 UDP发包工具 串口	
From 192.168.1.254: bytes=32 seq=3 ttl=128 time=78 ms From 192.168.1.254: bytes=32 seq=4 ttl=128 time=110 ms	^
From 192.168.1.254: bytes=32 seq=5 ttl=128 time=79 ms	
192.168.1.254 ping statistics	
5 packet(s) received	
0.00% packet loss	
round-trip min/avg/max = 63/81/110 ms	
PC>ping 192.168.1.254	
Fing 192.168.1.254: 32 data bytes, Press Ctrl_C to break	
From 192.168.1.254: bytes=32 seq=1 ttl=128 time=79 ms	
From 192.168.1.254: bytes=32 seq=2 ttl=128 time=63 ms	
From 192.168.1.254: bytes=32 seq=4 ttl=128 time=79 ms	
From 192.168.1.254: bytes=32 seq=5 ttl=128 time=63 ms	
192.168.1.254 ning statistics	
5 packet(s) transmitted	
5 packet(s) received	
0.00% packet loss	
round errp mrn/avg/max = 63/63/75 ms	
PC>	U

VLAN 30 内的 Client E 与 VLAN 40 内的 Server 可相互访问

E PC13	-	Х
基础 a 定 和 a 定 和 a 和 a 和 a 和 a 和 a 和 a 和 a 和		
From 192.168.1.254: bytes=32 seq=3 ttl=128 time=78 ms From 192.168.1.254: bytes=32 seq=4 ttl=128 time=110 ms From 192.168.1.254: bytes=32 seq=5 ttl=128 time=78 ms		^
192.168.1.254 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 78/84/110 ms		
PC>ping 192.168.1.254		
Ping 192.168.1.254: 32 data bytes, Press Ctrl_C to break From 192.168.1.254: bytes=32 seq=1 ttl=128 time=79 ms From 192.168.1.254: bytes=32 seq=2 ttl=128 time=93 ms From 192.168.1.254: bytes=32 seq=3 ttl=128 time=125 ms From 192.168.1.254: bytes=32 seq=4 ttl=128 time=94 ms From 192.168.1.254: bytes=32 seq=5 ttl=128 time=110 ms		
192.168.1.254 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 79/100/125 ms PC>		~

四十、配置 BFD 与 OSPF 联动实验组 XX 实验拓扑: OSPF Neighbor G0/0/0 E0/0/2 E0/0/1 G0/0/0 E0/0/1 E0/0/2 SWB RTA SWA RTB 二、实验目的:

RTA 与 RTB 运行 OSPF 路由协议,之后在 RTA 与 RTD 上开启 BFD 功能,令 OSPF 与 BFD 联动,采用 BFD 控制数据方式,实 现当 RTA 或 RTB 与二层交换机之间以及二层交换机之间的链路 出现故障【如链路 down】时,BFD 能够快速感知并通告 OSPF 协议

三、实验步骤:
RTA:
system-view #进入系统视图模式
sysname RTA #给设备命名
bfd #全局开启 BFD 功能
interface G0/0/0 #进入相应接口
ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

东方瑞通 图学习 interface Loopback0 #创建环回接口 0 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路 由器 ID bfd all-interfaces enable #为所有运行 OSPF 路由协议的 接口开启 BFD 功能 #创建 OSPF 区域 0 area 0 network 192.168.1.0 0.0.0.255 #通告其直连网段 RTB: system-view sysname RTB bfd interface G0/0/0 ip address 192.168.1.2 24 interface Loopback0 ip address 2.2.2.2 32 ospf 1 router-id 2.2.2.2 bfd all-interfaces enable area 0 network 192.168.1.0 0.0.0.255

四十一、配置 BFD 与 VRRP 联动实验 组网

二、实验目的:

全网使用 RIPv2 路由协议联通, SWA 与 SWB 为 VRRP 备份组, SWB 为 Master;在 SWB 与 RTC 上启用 BFD,当 RTB 与 RTC 的互联链路出现故障时,SWB 的 BFD 功能能够快速感知并切换 为备用网关状态,令 SWA 成为主用网关

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 30.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

东方瑞通 图学习

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

network 30.0.0.0 #通告其直连网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 40.1.1.1 24

rip 1

version 2

network 20.0.0.0

network 40.0.0.0

undo summary

RTC:

system-view

东方瑞通

终月:

sysname RTC

bfd #全局开启 BFD 功能

interface G0/0/0

ip address 10.1.1.2 24

interface G0/0/1

ip address 20.1.1.2 24

interface Loopback0

ip address 172.16.1.254 24

rip 1

version 2

network 10.0.0.0

network 20.0.0.0

network 172.16.0.0

undo summary

bfd 1 bind peer-ip 40.1.1.2 source-ip 20.1.1.2 auto

#开启 BFD 自动会话功能,并指定目标地址与源地址

commit #确认开启此功能

SWA:

system-view

sysname SWA

vlan 100 #创建 VLAN 100

东方瑞通 图学习

#创建 VLAN 200 vlan 200 interface vlan 100 #进入 VLAN 100 接口 #配置 IP 地址及子网掩码 ip address 30.1.1.2 24 interface vlan 200 #进入 VLAN 300 接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 vrrp vrid 47 virtual-ip 192.168.1.254 #开启 VRRP 功 能,设置组号为47,并指定虚拟 IP 地址为 192.168.1.254 interface E0/0/1 #进入相应端口 port link-type access #将端口配置为接入模式 #将端口加入进 VLAN 100 port default vlan 100 interface E0/0/2 #进入相应端口 #将端口配置为接入模式 port link-type access port default vlan 200 #将端口加入讲 VLAN 200 rip 1 version 2 network 30.0.0.0 network 192.168.1.0 undo summary

SWB:

system-view

sysname SWB

bfd

vlan 100

vlan 200

interface vlan 100

ip address 40.1.1.2 24

interface vlan 200

ip address 192.168.1.2 24

vrrp vrid 47 virtual-ip 192.168.1.254

vrrp vrid 47 priority 200 #配置优先级为 200

vrrp vrid 47 track bfd-session session-name 1 reduced

110

#在 VRRP 下跟踪 BFD 会话 1, 若被跟踪链路发生故障, 则

VRRP 优先级降低 110

interface E0/0/1

port link-type access

port default vlan 100

interface E0/0/2

port link-type access

port default vlan 200

rip 1

version 2

network 40.0.0.0

network 192.168.1.0

undo summary

bfd 1 bind peer-ip 20.1.1.2 source-ip 40.1.1.2 auto

commit

SWC:

system-view

sysname SWC

四十二、配置 BFD 与静态路由联动实 验组网

实验拓扑: RTB G0/0/0 10.1.1.0 30.1.1.0/24 G0/0/0 G0/0/1 G0/0/2 RTA 192.168.1.0/24 72 16 1 0/24 Client A G0/0/Ì 60/0/0 HTTP Ser 20.1.1.0/24 40.1.1.0/24 $\langle R \rangle$ G0/0/1 G0/0/0

二、实验目的:

RTA 模拟某园区网的双出口点,分别连通 RTB (ISP1) 与 RTC (ISP2),正常情况下默认路由通往 RTB (ISP1), RTC (ISP2) 处在备用状态;在 RTA 与 RTD 上开启 BFD 功能,当 RTB(ISP1) 通往 RTD 的网络出现故障的时候,能够快速切换至 RTC(ISP2) 方向

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

bfd #全局开启 BFD 功能

interface G0/0/0 #进入相应接口

Designer : Yiqian Hu

207 https://huawei.easthome.com/

东方瑞通 图 23

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

bfd 1 bind peer-ip 30.1.1.2 source-ip 10.1.1.1 auto

#开启 BFD 自动会话功能,并指定目标地址与源地址。

commit #确认开启此功能

ip route-static 30.1.1.0 255.255.255.0 10.1.1.2 #配置默 认路由到达 30.1.1.0 网段

ip route-static 40.1.1.0 255.255.255.0 20.1.1.2 #配置默 认路由到达 40.1.1.0 网段

ip route-static 0.0.0.0 0.0.0.0 10.1.1.2 track bfd-session 1 #配置缺省路由,并联动 BFD 跟踪会话 1,若被跟踪链路发生 故障,则将该链路置为非激活状态,并在路由表中删除此条路 由

ip route-static 0.0.0.0 0.0.0.0 20.1.1.2 preference 80 #配置缺省路由,设置其路由优先级值为 80,令其成为备份路 由

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

ip route-static 20.1.1.0 255.255.255.0 10.1.1.1

ip route-static 40.1.1.0 255.255.255.0 30.1.1.2

ip route-static 172.16.1.0 255.255.255.0 30.1.1.2

ip route-static 192.168.1.0 255.255.255.0 10.1.1.1

RTC:

system-view sysname RTC interface G0/0/0 ip address 20.1.1.2 24 interface G0/0/1 ip address 40.1.1.1 24 ip route-static 10.1.1.0 255.255.255.0 20.1.1.1 ip route-static 30.1.1.0 255.255.255.0 40.1.1.2 ip route-static 172.16.1.0 255.255.255.0 40.1.1.2 ip route-static 192.168.1.0 255.255.255.0 20.1.1.1

RTD:

system-view

sysname RTD

bfd

interface G0/0/0

ip address 40.1.1.2 24

interface G0/0/1

ip address 30.1.1.2 24

interface G0/0/2

ip address 172.16.1.1 24

bfd 1 bind peer-ip 10.1.1.1 source-ip 30.1.1.2 auto

commit

ip route-static 0.0.0.0 0.0.0.0 30.1.1.1 track bfd-session 1

ip route-static 0.0.0.0 0.0.0.0 40.1.1.1 preference 80

ip route-static 10.1.1.0 255.255.255.0 30.1.1.1

ip route-static 20.1.1.0 255.255.255.0 40.1.1.1

测试:

在 RTB 与 RTD 之间的链路没有失效时, 查看 RTA 的路由表项:

[RTA]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib			
Routing Tables: Pub Destinatio	olic ons : 17		Routes : 16				
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface	
0.0.0.0/0	Static	60	0	RD	10.1.1.2	GigabitEthernet	
10.1.1.0/24	Direct	0	0	D	10.1.1.1	GigabitEthernet	
0/0/0 10.1.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet	
10.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet	
20.1.1.0/24	Direct	0	0	D	20.1.1.1	GigabitEthernet	
0/0/1 20.1.1.1/32	Direct			D	127.0.0.1	GigabitEthernet	
20.1.1.255/32	Direct	0		D	127.0.0.1	GigabitEthernet	
0/0/1 30.1.1.0/24	Static	60	0	RD	10.1.1.2	GigabitEthernet	
40.1.1.0/24	Static	60	0	RD	20.1.1.2	GigabitEthernet	
0/0/1	Direct	0	0	D	127 0 0 1	IntoonPack0	
127.0.0.1/32	Direct		0	D	127.0.0.1	InLoopBack0	
107 255 255 255/32	Direct	0	0	D	127.0.0.1	InLoopBack0	
192 168 1 0/24	Direct	0	0	D	192 168 1 1	GigabitEthernet	
0/0/2	DITECC				172.100.1.1	Gigabithemet	
192.168.1.1/32 0/0/2	Direct	0	0	D	127.0.0.1	GigabitEthernet	
192.168.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet	
0/0/2 255.255.255.25 <u>5/32</u>	Direct	0	0	D	127.0.0.1	InLoopBack0	
[RTA]							

在 RTB 与 RTD 之间的链路失效后,再次查看 RTA 的路由表项:

Routing Tables: Pub	lic		Routes	• 16		
Destinatio	. <u>10</u>		Rouces	. 10		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
0.0.0.0/0	Static	80	0	RD	20.1.1.2	GigabitEthernet
10.1.1.0/24	Direct	0	0	D	10.1.1.1	GigabitEthernet
0/0/0						019482020101100
10.1.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
10.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0	Diment				00 1 1 1	CiarlitEthannat
0/0/1	Direct	0	U	D	20.1.1.1	GIGADICECHEINEL
20.1.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1	211000					organicolonormoo
20.1.1.255/32	Direct	0		D	127.0.0.1	GigabitEthernet
0/0/1						
30.1.1.0/24	Static	60	0	RD	10.1.1.2	GigabitEthernet
0/0/0	A 1	60			00 1 1 0	
40.1.1.0/24	Static	60	U	RD	20.1.1.2	GigabitEthernet
127 0 0 0/8	Direct	0	0	D	127 0 0 1	InLoonBack0
127.0.0.1/32	Direct	0	0	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0
192.168.1.0/24	Direct	0	0	D	192.168.1.1	GigabitEthernet
0/0/2						
192.168.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/2						
192.168.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/2						
255.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0
[RTA]						

通过路由表项的输出结果可以明显看到,当 RTB 与 RTD 之间的 链路失效后,在 BFD 的帮助下,RTA 的缺省路由立即执行了自 动切换至备份路径 (RTC)的操作

四十三、配置 BFD 与 BGP 联动实验组 网

二、实验目的:

RTA、RTB 与 RTC 首先运行 OSPF 路由协议,之后在 RTA 与 RTC 上配置 BGP, 令其互为对等体关系,再在 RTA 与 RTC 上开启 BFD 功能,采用 BFD 控制数据方式实现当 RTA 或 RTC 与中间 网络设备以及中间网络通道内部链路出现故障时,BFD 能够快速 感知并通告 BGP 协议

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

bfd #全局开启 BFD 功能

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

213 https://huawei.easthome.com/

东方瑞通 图 23

interface Loopback0 #创建环回接口 0 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路 由器ID #创建 OSPF 区域 0 area 0 network 10.1.1.0 0.0.0.255 #通告其直连网段 #通告其环回接口地址 network 1.1.1.1 0.0.0.0 bgp 65001 #开启 BGP 路由功能,并配置其 AS = #配置设备的 BGP 路由器 ID router-id 1.1.1.1 peer 3.3.3.3 as-number 65001 #指定对等体的路由器 ID, 以及远程自治系统号码 peer 3.3.3.3 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 10.1.1.0 24 #通告自己的网段及子网掩码 undo summary automatic #关闭自动汇总 peer 3.3.3.3 bfd enable #在 BGP 协议中与对等体开启 BFD 功能

RTB: system-view sysname RTB interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2

area 0

network 10.1.1.0 0.0.0.255

network 20.1.1.0 0.0.0.255

network 2.2.2.2 0.0.0.0

RTC:

system-view

sysname RTC

bfd

interface G0/0/0

ip address 20.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

network 3.3.3.3 0.0.0.0

bgp 65001

router-id 3.3.3.3

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 connect-interface LoopBack0

network 20.1.1.0 24

undo summary automatic

peer 1.1.1.1 bfd enable

四十四、配置 BFD 单臂回声实验组网

一、实验拓扑:

二、实验目的:

RTA 与 RTB 直连, RTA 支持 BFD 功能, 而 RTB 不支持 BFD 功能, 在 RTA 上配置 BFD 单臂回声,从而实现转发链路的连通性检测功能

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

bfd #全局开启 BFD 功能

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

bfd 1 bind peer-ip 10.1.1.2 interface g0/0/0 source-ip

10.1.1.1 one-arm-echo #配置 BFD 单臂回声功能,指定对

端地址与本地外出接口

discriminator local 100 #配置本地标识符

commit #确认开启此功能

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 10.1.1.2 24

Designer : Yiqian Hu

四十五、配置端口镜像实验组网

一、实验拓扑:

二、实验目的:

在 RTA 上配置端口镜像,将 Client A (192.168.1.10/24)访问 HTTP Server 的所有流量全部镜像至 G0/0/2 接口所连接的监 控设备上

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

observe-port interface G0/0/2 #将 G0/0/2 接口配置为

观察端口

acl 2001 #创建基本访问控制列表

rule permit source 192.168.1.10 0 #匹配源地址

192.168.1.10

traffic classifier *clienta* operator or #创建传输类别并指 定其运行【或】运算 if-match acl 2001 #指定其匹配 ACL 2001 traffic behavior *clienta* #创建传输行为 mirror to observe-port #将传输类别匹配上的地址的流量 镜像至观察端口 traffic policy atnet #创建传输策略 classifier *clienta* behavior *clienta* #应用传输类别与传 输行为 interface G0/0/0 #进入相应的接口 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 traffic-policy atnet inbound #将传输策略应用在镜像端 口的入方向上 interface G0/0/1 #进入相应的接口 ip address 20.1.1.1 24 #配置 IP 地址及子网掩码 interface G0/0/2 #进入相应的接口 ip address 172.16.1.1 24 #配置 IP 地址及子网掩码

测试:

从 Client A 去 ping HTTP Server (20.1.1.254/24),同时在 监控设备上使用 Wireshark 观察结果:

s Frame 1: 74 bytes on wire (522 bft2), 74 bytes appuned (532 bft2) # Ethernet II, Src: wares [247:78 (00:00:27)74), DSI: NAMMETTE_fd:82:50 (00:00:ft:fd:82:50) # Internet Findow Warsin 4, in: [12:66.1.10 (132.166.1.10), OSI: 20.11.754 (20.11.754) # Internet Control Message Protocol	
0000 00 e0 fc fd 62 3b 00 0c 29 f2 47 7e 08 00 45 00,b[.,], C-, E. 0010 00 g2 c0 95 00 08 00 f3 67 7b c0 a8 00 a14 00,b[.,], C-, E. 0010 01 g1 66 08 05 16 20 70 20 00 16 12 8 04 16 00,b[,b]. 0010 77 61 42 36 46 55 66 67 66 69 0010 77 61 42 63 64 65 66 67 66 69 0010 77 61 42 63 64 65 66 67 66 69	
Whate Virtual Ethernet Adapter - Kine Pecietti 4 Displayed: 4 Marked: 0	Profile: Default

从 Client A 去访问 HTTP Server (20.1.1.254/24) 的网页,

同时在监控设备上使用 Wireshark 观察结果:

二、实验目的:

全网运行 OSPF 路由选择协议, 在所有路由器上开启组播路由功 能并配置使用 PIM-SM, 使 RTA 成为候选 BSR 与候选 RP; 令 Video Server 向组播组 239.1.1.10 发送组播数据; Client A 直 接与 RTB 的 GO/0/1 接口相连,当 Client A 接收组播数据时, 在 RTB 上观察组播组的动态加入与离开过程; RTC 与 SWA (使 用 CE6800) 相连,在 SWA 上开启 IGMP Snooping 与 IGMP Snooping proxy 功能,令 Client B 也能够正常接收来自 Video Server 的组播数据

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

multicast routing-enable #开启组播路由功能

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

pim sm #配置接口运行 PIM 的稀疏模式

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

pim sm #配置接口运行 PIM 的稀疏模式

interface G0/0/2 #进入相应接口

ip address 30.1.1.1 24 #配置 IP 地址及子网掩码

pim sm #配置接口运行 PIM 的稀疏模式

interface Loopback0 #创建环回接口 0

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

pim #进入 PIM 的配置模式

c-bsr G0/0/0 #指定接口 G0/0/0 为候选 BSR

c-rp G0/0/0 #指定接口 G0/0/0 为候选 RP

c-bsr priority 200 #配置候选 BSR 的优先级为 200

c-rp priority 100 #配置候选 RP 的优先级为 100

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路

224 https://huawei.easthome.com/

由器 ID

area 0 #创建 OSPF 区域 0

network 10.1.1.0 0.0.0.255

network 20.1.1.0 0.0.0.255

network 30.1.1.0 0.0.0.255

#通告其直连网段

#通告其直连网段

#通告其直连网段

RTB:

system-view

sysname RTB

multicast routing-enable

interface G0/0/0

ip address 20.1.1.2 24

pim sm

interface G0/0/1

ip address 192.168.1.1 24

igmp enable #开启 IGMP 功能

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2

area 0

network 20.1.1.0 0.0.0.255

network 192.168.1.0 0.0.0.255

RTC:

system-view

sysname RTC

multicast routing-enable

interface G0/0/0

ip address 30.1.1.2 24

pim sm

interface G0/0/1

ip address 172.16.1.1 24

igmp enable

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 30.1.1.0 0.0.0.255

network 172.16.1.0 0.0.0.255

SWA:

system-view immediately #进入系统视图模式并配置为让

命令立即生效

sysname SWA

multicast routing-enable

Designer : Yiqian Hu

igmp snooping enable #全局下启用 IGMP Snooping 功 能

#进入 VLAN 1 的配置模式 vlan 1

igmp snooping enable #在 VLAN 下启用 IGMP

Snooping 功能

igmp snooping proxy #在 VLAN 下启用 IGMP

Snooping 代理功能

interface G1/0/0

#CE6800 交换机的端口默认 undo shutdown

shutdown, 需手动启用

interface G1/0/1

undo shutdown

Designer : Yiqian Hu

测试:

在 Client A 没有加入组播组接收组播数据时,在 RTB 上查看 IGMP 的组信息:

[RTB]display igmp group interface g0/0/1 [RTB]

通过查看发现没有任何的组成员加入

当 Client A 加入组播组 239.1.1.10 并收看 Video Server 发布 的视频时,再次查看 RTB 的 IGMP 组信息:

[RTB]display igmp	group interface	g0/0/1	
Interface group re	eport information	n of VPN-Ins	tance: public net
GigabitEthernet0,	/0/1(192.168.1.1):	
Total 1 IGMP Gr	oup reported		
Group Address	Last Reporter	Uptime	Expires
239.1.1.10	192.168.1.10	00:00:04	00:02:06
[RTB]			

发现组播组中立即出现组成员: 192.168.1.10

在 SWA 上查看 VLAN 1 下的 IGMP Snooping 路由端口:

[SWA]display igmp snooping router-po	ort vlan 1		
Port Name	Oblime	Expires	Flags
VLAN 1, 1 router-port(s)			
GE1/0/0	00h17m13s	00h02m46s	DYNAMIC
[SWA]			

在 Client B 没有加入组播组接收组播数据时,在 SWA 上查看 IGMP Snooping 的端口信息:

[SWA]di	splay igmp s	nooping port-i	nfo	
Flag:	S:Static	D:Dynamic	M:Ssm-mapping	
	A:Active	P:Protocol	T:Trill	
E. Lorent		(Source, Gro	oup) Port	
riag				
VLAN 1	, 1 Entry(s)	(+ 020 1 1	10)	
7		(*, 239.1.1.	10)	
-A-				
[SWA]				

当 Client B 加入组播组 239.1.1.10 并收看 Video Server 发布 的视频时,再次查看 SWA 的 IGMP Snooping 端口信息:

Flag:	S:Static A:Active	D:Dynamic P:Protocol (Source, Grou	M:Ssm-mapping T:Trill up) Port		
Flag					
 VLAN 1	, 1 Entry(s)	(*, 239.1.1.)	10)		
PA-			GE1/0/1		
-D-				1 port(s) include	

发现组播组中立即出现成员端口: GE1/0/1

四十七、配置 IKE 方式的 IPSec VPN 实验组网

二、实验目的:

Hub 路由器为公司总部边界路由, Spoke 路由器为公司分部边 界路由, Internet 路由器为互联网公有路由; 在 Hub 与 Spoke 路由器上配置 IPSec VPN, 令 Client A 与 Client B 可相互通讯

三、实验步骤:

Hub:

system-view #进入系统视图模式

sysname Hub #给设备命名

interface G0/0/0 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 acl number 3001 #创建高级 ACL rule 5 permit ip source 192.168.1.0 0.0.255 destination 172.16.1.0 0.0.0.255 #定义感兴趣流, 允许本地网段 192.168.1.0/24 访问远端网段 172.16.1.0/24 ipsec proposal *huawei* #创建并进入 IPSec 提议视图 esp authentication-algorithm sha1 #配置 ESP 协议使用 的认证算法为 sha1 ike peer *spoke* v1 #使用 IKE 版本 1 并指定对端名称 pre-shared-key cipher *P@ssw0rd* #使用预共享密钥并 创建加密密钥 remote-address 30.1.1.2 #指定远端公网地址 ipsec policy *easthome* 1 isakmp #创建 IPSec 策略集 #调用高级 ACL 定义的感兴趣流 security acl 3001 ike-peer spoke #调用先前创建的 IKE 对等体 proposal huawei #调用先前创建的 IPSec 提议视图 interface G0/0/0 #进入相应接口 ipsec policy easthome #在外出接口上调用该策略集 ip route-static 0.0.0.0 0 20.1.1.2 #配置缺省路由

Internet:

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

Spoke:

system-view

sysname Spoke

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

acl number 3001

rule 5 permit ip source 172.16.1.0 0.0.255 destination

192.168.1.0 0.0.0.255

ipsec proposal huawei

esp authentication-algorithm sha1

ike peer hub v1

pre-shared-key cipher *P@ssword*

remote-address 20.1.1.1

ipsec policy *easthome* 1 isakmp

security acl 3001

ike-peer *hub*

Designer : Yiqian Hu

proposal *huawei*

interface G0/0/1

ipsec policy *easthome*

ip route-static 0.0.0.0 0 30.1.1.1

四十八、配置手动方式的 IPSec VPN

实验组网

二、实验目的:

Hub 路由器为公司总部边界路由, Spoke 路由器为公司分部边 界路由, Internet 路由器为互联网公有路由; 在 Hub 与 Spoke 路由器上配置 IPSec VPN, 令 Client A 与 Client B 可相互通讯

三、实验步骤:

Hub:

system-view #进入系统视图模式

sysname Hub #给设备命名

interface G0/0/0 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 acl number 3001 #创建高级 ACL rule 5 permit ip source 192.168.1.0 0.0.255 destination 172.16.1.0 0.0.0.255 #定义感兴趣流, 允许本地网段 192.168.1.0/24 访问远端网段 172.16.1.0/24 ipsec proposal *huawei* #创建并进入 IPSec 提议视图 esp authentication-algorithm sha1 #配置 ESP 协议使用 的认证算法为 sha1 ipsec policy *easthome* 1 manual #创建 IPSec 策略集并指 定为手工模式 security acl 3001 #调用高级 ACL 定义的感兴趣流 proposal huawei #调用先前创建的 IPSec 提议视图 tunnel local 20.1.1.1 #指定隧道本端地址 tunnel remote 30.1.1.2 #指定隧道远端地址 sa spi inbound esp 54321 #配置安全联盟入方向的安全参 数索引 (SPI);本端入方向安全联盟的 SPI 值必须与对端出方 向的安全联盟的 SPI 值相同 sa string-key inbound esp cipher P@sswOrd #配置安全 联盟入方向的认证密钥 sa spi outbound esp 12345 #配置安全联盟出方向的安 全参数索引 (SPI);本端出方向安全联盟的 SPI 值必须与对端 入方向的安全联盟的 SPI 值相同

东方瑞通 图 23

sa string-key outbound esp cipher *P@ssw0rd* #配置安 全联盟出方向的认证密钥 interface G0/0/0 #进入相应接口 ipsec policy *easthome* #在外出接口上调用该策略集 ip route-static 0.0.0.0 0.0.0.0 20.1.1.2 #配置缺省路由 Internet: interface G0/0/0 ip address 30.1.1.1 24 interface G0/0/1 ip address 20.1.1.2 24 Spoke: system-view sysname Spoke interface G0/0/0 ip address 172.16.1.1 24 interface G0/0/1 ip address 30.1.1.2 24 acl number 3001 rule 5 permit ip source 172.16.1.0 0.0.255 destination 192.168.1.0 0.0.0.255

ipsec proposal huawei

esp authentication-algorithm sha1

ipsec policy *easthome* 1 manual

security acl 3001

proposal *huawei*

tunnel local 30.1.1.2

tunnel remote 20.1.1.1

sa spi inbound esp 12345

sa string-key inbound esp cipher *P@ssw0rd*

sa spi outbound esp 54321

sa string-key outbound esp cipher P@ssw0rd

interface G0/0/1

ipsec policy *easthome*

ip route-static 0.0.0.0 0.0.0.0 30.1.1.1

四十九、配置 GRE VPN 实验组网 (一)

二、实验目的:

Hub 路由器为公司总部边界路由, Spoke 路由器为公司分部边 界路由, Internet 路由器为互联网公有路由; 在 Hub 与 Spoke 路由器上配置 GRE Tunnel, 令 Client A 与 Client B 可相互通讯

三、实验步骤:

Hub:

system-view #进入系统视图模式

sysname Hub #给设备命名

interface G0/0/0 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

东方瑞通 图 23

ip address 192.168.1.1 24	#配置 IP 地址及子网掩码
interface tunnel0/0/0	#创建并进入隧道接口
ip address 100.1.1.1 24	#配置隧道内 IP 地址及子网掩码
tunnel-protocol gre #	指定隧道协议为 GRE
source 20.1.1.1 #指式	E隧道的源 IP 地址
destination 30.1.1.2 #	指定隧道的目的 IP 地址
ip route-static 0.0.0.0 0 20	0.1.1.2 #配置缺省路由
ip route-static 172.16.1.0	24 tunnel0/0/0 #配置静态路
由,指定到达对端内部网段	的外出接口为隧道接口

Internet:

interface G0/0/0 ip address 30.1.1.1 24 interface G0/0/1 ip address 20.1.1.2 24

Spoke:

system-view

sysname Spoke

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

Designer : Yiqian Hu

ip address 30.1.1.2 24

interface tunnel0/0/0

ip address 100.1.1.2 24

tunnel-protocol gre

source 30.1.1.2

destination 20.1.1.1

ip route-static 0.0.0.0 0 30.1.1.1

ip route-static 192.168.1.0 24 tunnel0/0/0

五十、配置 GRE VPN 实验组网(二)

-、实验拓扑:

二、实验目的:

RTA 与 Hub 路由器为公司总部网络, Spoke 与 RTB 为公司分部网络, 公司总部与分部均运行 OSPF 路由选择协议, 在 Hub和 Spoke 路由器上运行 GRE Tunnel, 令总部与分部的 OSPF 路由协议可以相互学习彼此的路由条目,进而实现相互通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

interface Loopback0 #创建并进入环回接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路

241 https://huawei.easthome.com/

东方瑞通 图 23

由器 ID

area 0 #创建 OSPF 区域 0

network 192.168.1.0 0.0.0.255 #通告其直连网段

Hub:

system-view

sysname Hub

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 192.168.1.2 24

interface Loopback0

ip address 2.2.2.2 32

interface tunnel0/0/0 #创建并进入隧道接口

ip address 10.1.1.1 24 #配置隧道内 IP 地址及子网掩码

tunnel-protocol gre #指定隧道协议为 GRE

source 20.1.1.1 #指定隧道的源 IP 地址

destination 30.1.1.2 #指定隧道的目的 IP 地址

keepalive period 3 #开启 GRE 隧道接口的 Keepalive 检

测功能,并指定检测报文的发送周期为 3s

ospf 1 router-id 2.2.2.2

area 0

network 192.168.1.0 0.0.0.255

network 10.1.1.0 0.0.0.255

ip route-static 0.0.0.0 0 20.1.1.2 #配置缺省路由

Internet:

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

Spoke:

system-view

sysname Spoke

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

interface tunnel0/0/0

ip address 10.1.1.2 24

tunnel-protocol gre

Designer : Yiqian Hu

source 30.1.1.2

destination 20.1.1.1

ospf 1 router-id 4.4.4.4

area 0

network 172.16.1.0 0.0.0.255

network 10.1.1.0 0.0.0.255

ip route-static 0.0.0.0 0 30.1.1.1

RTB:

system-view

sysname RTB

interface G0/0/1

ip address 172.16.1.2 24

interface Loopback0

ip address 5.5.5.5 32

ospf 1 router-id 5.5.5.5

area 0

network 172.16.1.0 0.0.0.255

五十一、配置 GRE over IPSec VPN 实验组网

二、实验目的:

RTA 与 Hub 路由器为公司总部网络, Spoke 与 RTB 为公司分部网络, 公司总部与分部均运行 OSPF 路由选择协议, 在 Hub 和 Spoke 路由器上运行 GRE over IPSec VPN, 令总部与分部的 OSPF 路由协议可以相互学习彼此的路由条目,进而实现相互通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

东方瑞通[®] 图 考习

interface Loopback0 #创建并进入环回接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 #进入 OSPF 进程 1, 并指定其路 ospf 1 router-id 1.1.1.1 由器ID #创建 OSPF 区域 0 area 0 #通告其直连网段 network 192.168.1.0 0.0.0.255 Hub: system-view sysname Hub interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 192.168.1.2 24 interface Loopback0 ip address 2.2.2.2 32 #创建高级 ACL acl 3001 rule 5 permit ip source 20.1.1.1 0 destination 30.1.1.2 0 #定义感兴趣流, 允许本端外网地址 20.1.1.1 访问远端外网地 址 30.1.1.2 ipsec proposal *huawei* #创建并进入 IPSec 提议视图 esp authentication-algorithm md5 #配置 ESP 协议使用

246 https://huawei.easthome.com/

的认证算法为 md5
esp encryption-algorithm 3des #配置 ESP 协议使用的加
密算法为 3des
ike peer <i>spoke</i> v1 #使用 IKE 版本 1 并指定对端名称
pre-shared-key cipher P@sswOrd #使用预共享密钥并
创建加密密钥
remote-address 30.1.1.2 #指定远端外网地址
ipsec policy <i>easthome</i> 1 isakmp #创建 IPSec 策略集
security acl 3001 #调用高级 ACL 定义的感兴趣流
ike-peer <i>spoke</i> #调用先前创建的 IKE 对等体
proposal huawei #调用先前创建的 IPSec 提议视图
interface G0/0/0
ipsec policy easthome #在外出接口上调用该策略集
interface tunnel0/0/0 #创建并进入隧道接口
ip address 100.1.1.1 24 #配置隧道内 IP 地址及子网掩码
tunnel-protocol gre #指定隧道协议为 GRE
source 20.1.1.1 #指定隧道的源 IP 地址
destination 30.1.1.2 #指定隧道的目的 IP 地址
ospf 1 router-id 2.2.2.2
area 0
network 192.168.1.0 0.0.0.255
network 100.1.1.0 0.0.0.255

ip route-static 0.0.0.0 0 20.1.1.2 #配置缺省路由

Internet:

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

Spoke:

system-view

sysname Spoke

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

acl 3001

rule 5 permit ip source 30.1.1.2 0 destination 20.1.1.1 0

ipsec proposal *huawei*

esp authentication-algorithm md5

esp encryption-algorithm 3des

Designer : Yiqian Hu

248 https://huawei.easthome.com/

东方瑞通 图 2 2 3

ike peer *hub* v1

pre-shared-key cipher *P@ssw0rd*

remote-address 20.1.1.1

ipsec policy *easthome* 1 isakmp

security acl 3001

ike-peer hub

proposal *huawei*

interface G0/0/1

ipsec policy *easthome*

interface tunnel0/0/0

ip address 100.1.1.2 24

tunnel-protocol gre

source 30.1.1.2

destination 20.1.1.1

ospf 1 router-id 4.4.4.4

area 0

network 172.16.1.0 0.0.0.255

network 100.1.1.0 0.0.0.255

ip route-static 0.0.0.0 0 30.1.1.1

RTB:

system-view

sysname RTB

interface G0/0/1

ip address 172.16.1.2 24

interface Loopback0

ip address 5.5.5.5 32

ospf 1 router-id 5.5.5.5

area 0

network 172.16.1.0 0.0.0.255

一、实验拓扑:

二、实验目的:

Hub 路由器为公司总部边界路由,在 Hub 路由器上配置 L2TP VPN,令连接在 Internet 路由器上的 Client A 能够通过 secoclient 软件正常拨入,与 Hub 路由器建立 L2TP 隧道

三、实验步骤:

Hub:

system-view #进入系统视图模式

sysname Hub #给设备命名

interface G0/0/0 #进入相应接口

ip address 172.16.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

aaa #进入 AAA 的配置模式

local-user *easthome* password cipher *P@ssword* #创

251 https://huawei.easthome.com/

建用户及登录密钥
local-user <i>easthome</i> service-type ppp #配置该用户的服
务类型为 PPP
ip pool /2tpvpn #创建地址池并命名
network 192.168.1.0 mask 24 #配置地址池内可分配的地
址段及掩码
gateway-list 192.168.1.1 #配置分配的网关
interface Virtual-Template1 #创建并进入虚拟模板接口
ip address 192.168.1.1 24 #配置 IP 地址及子网掩码
ppp authentication-mode chap #配置认证模式使用
СНАР
remote address pool 12tpvpn #指定远端用户从该地址池
中获取 IP 地址
l2tp enable #开启 L2TP 功能
I2tp-group 1 #创建并进入 L2TP 组
mandatory-chap #启用 CHAP 的重协商功能
undo tunnel authentication #关闭隧道认证功能
mandatory-lcp #启用 LCP 的重协商功能
allow l2tp virtual-template 1 #允许 L2TP 绑定虚拟模板
接口
tunnel name <i>easthome #</i> 为隧道命名
ip route-static 0.0.0.0 0 20.1.1.2 #配置缺省路由

252 https://huawei.easthome.com/

Internet:

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

Client A:

在客户端上安装 secoclient【VPN 客户端软件】

注: 客户端使用的操作系统最低版本要求为 Windows Vista

secoclient-win-64-7.0.2.26 Setup.exe Huawei company, Inc.

选择左侧的【L2TP/IPSec】,之后填写【连接名称(可随意填写)】、【LNS 服务器地址(Hub 路由器的外网接口地址)】、【隧 道名称(填写路由器上配置的隧道名称)】、【认证模式(选择路 由器上配置的认证模式)】

1+32840.		
СС РВ	● 新建连接	5
	SSL VPN LITP投資 LITP	
2010年1月1日の1月1日の1月1日の1月1日の1月1日の1月1日の1月1日の1月1日	L2TP/IPSec easthome · · · · · · · · · · · · · · · · · · ·	
Ha'i gi an	◆ 导入配置 □	
Secolient	解道名称: easthome ● 认证模式: CHAP	
	「 倉用隧道金证効館 隙道金证券码: 「 取消 」 确定	
		đ.
🚈 🦓 🖉 📜 🚺		СН 🚎 😨 🕈 🕞 🙀 🕩 14:45 🛌
全部填写完毕后	点击【确定】	
NV.		

填写完用户名及密码后,点击【登录】

查看客户端获取的 IP 地址、子网掩码、网关等信息

测试:

查看 Hub 路由器上 L2TP 隧道的建立情况:

[Hub]disp	lay 12tp ti	unnel			
Total tu LocalTID 1	nnel = 1 RemoteTID 131	RemoteAddress 30.1.1.10	Port 42246	Sessions 1	RemoteName easthome
[Hub]					

查看 Hub 路由器上 L2TP 的会话情况:

五十三、配置 MBGP MPLS VPN 实验 组网

二、实验目的:

RTA (AS 65001) 与 RTF (AS 65003) 为同一家公司的两地网 络, RTC (AS 65002) 与 RTG (AS 65004) 为另一家公司的两 地网络, RTB、RTD、RTE 为运营商网络, 内部 IGP 使用 OSPF 连通,外网构建 BGP 网络,令 RTB 与 RTE 之间实现 MPLS VPN, 在穿越 BGP 网络环境下实现公司内部的通信

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface LoopBack0 #进入 Loopback 0 接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

rip 1 #开启 RIP 路由协议进程 1

version 2 #启用 RIP 版本 2

network 10.0.0.0 #通告自己直连的网段

network 192.168.1.0 #通告自己直连的网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

router id 1.1.1.1 #配置路由器 ID

mpls lsr-id 1.1.1.1 #配置 MPLS 标签交换路由器 ID

mpls #开启多协议标签交换功能

mpls ldp #开启 MPLS 标签分发协议

interface G0/0/0

ip address 30.1.1.1 24

mpls #接口下开启多协议标签交换功能

mpls ldp #接口下开启 MPLS 标签分发协议

interface G0/0/1

ip binding vpn-instance VPNA #配置接口与 VPN 实例

绑定

ip address 10.1.1.2 24

mpls

interface G0/0/2

ip binding vpn-instance VPNB #配置接口与 VPN 实例

绑定

ip address 20.1.1.2 24

mpls

interface LoopBack0

ip address 1.1.1.1 32

ip vpn-instance VPNA #创建 VPN 实例为 VPNA

route-distinguisher 100:1 #配置路由区分器 100:1

vpn-target 100:1 export-extcommunity #配置路由标记

发送 100:1

vpn-target 100:1 import-extcommunity #配置路由标记

接收 100:1

ip vpn-instance VPNB #创建 VPN 实例为 VPNB

262 https://huawei.easthome.com/

东方瑞通[®] 图 23

route-distinguisher 100):2 #j	配置路由标记	发送 100:2
vpn-target 100:2 expor	t-extcon	nmunity	#配置路由标记
发送 100:2			
vpn-target 100:2 impo	rt-extcor	nmunity	#配置路由标记
接收 100:2			
bgp 1			
peer 3.3.3.3 as-number	⁻ 1		\times
peer 3.3.3.3 connect-in	terface L	.oopBack0	#指定自身
与对等体之间用 Loopba	ck0 接口	来承载更新	
ipv4-family vpnv4	#进入 B	GP-VPNv4 🖯	P地址族
peer 3.3.3.3 enable	#使能对	等体交换 BG	P-VPNv4 路由
信息			
ipv4-family vpn-instan	ce VPNA	#进入 V	PN 路由转发实
例 VPNA 地址族			
import-route rip 1	#将 RIP	进程1的路由	自注入进 VPNA
实例			
ipv4-family vpn-instan	ce VPNB	#进入 V	PN 路由转发实
例 VPNB 地址族			
import-route rip 2	#将 RIP	进程2的路由	自注入进 VPNB
实例			
ospf 1			
area 0			

network 1.1.1.1 0.0.0.0

network 30.1.1.0 0.0.0.255

rip 1 vpn-instance VPNA #开启 VPNA 实例的 RIP 进程

1

version 2

network 10.0.0.0

import-route bgp #将 BGP 路由注入进 RIP 进程

undo summary

rip 2 vpn-instance VPNB

#开启 VPNB 实例的 RIP 进程

2

version 2

network 20.0.0.0

import-route bgp #将 BGP 路由注入进 RIP 进程 2

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.1 24

interface LoopBack0

ip address 172.16.1.1 24

rip 2

version 2

network 20.0.0.0

network 172.16.0.0

undo summary

RTD:

system-view

sysname RTD

router id 2.2.2.2

mpls lsr-id 2.2.2.2

mpls

mpls ldp

interface G0/0/0

ip address 40.1.1.1 24

mpls

mpls ldp

interface G0/0/1

ip address 30.1.1.2 24

mpls

mpls ldp

interface LoopBack0

ip address 2.2.2.2 32

ospf 1

area 0

network 30.1.1.0 0.0.0.255

network 40.1.1.0 0.0.0.255

network 2.2.2.2 0.0.0.0

RTE:

system-view

sysname RTE

router id 3.3.3.3

mpls lsr-id 3.3.3.3

mpls

mpls ldp

interface G0/0/0

ip address 40.1.1.2 24

mpls

mpls ldp

interface G0/0/1

ip binding vpn-instance VPNA

ip address 50.1.1.2 24

mpls

interface G0/0/2

ip binding vpn-instance VPNB

ip address 60.1.1.2 24

mpls

interface LoopBack0

ip address 3.3.3.3 32

ip vpn-instance VPNA

route-distinguisher 100:1

vpn-target 100:1 export-extcommunity

vpn-target 100:1 import-extcommunity

ip vpn-instance VPNB

route-distinguisher 100:2

vpn-target 100:2 export-extcommunity

vpn-target 100:2 import-extcommunity

bgp 1

peer 1.1.1.1 as-number 1

peer 1.1.1.1 connect-interface LoopBack0

ipv4-family vpnv4

peer 1.1.1.1 enable

ipv4-family vpn-instance VPNA

import-route rip 1

ipv4-family vpn-instance VPNB

import-route rip 2

ospf 1

area 0

network 3.3.3.3 0.0.0.0

network 40.1.1.0 0.0.0.255

rip 1 vpn-instance VPNA

version 2

network 50.0.0.0

import-route bgp

undo summary

rip 2 vpn-instance VPNB

version 2

network 60.0.0.0

import-route bgp

undo summary

RTF:

system-view

sysname RTF

interface G0/0/0

ip address 50.1.1.1 24

interface LoopBack0

ip address 192.168.2.1 24

rip 1

version 2

network 50.0.0.0

network 192.168.2.0

undo summary

RTG:

system-view

sysname RTG

interface G0/0/0

ip address 60.1.1.1 24

interface LoopBack0

ip address 172.16.2.1 24

rip 2

version 2

network 60.0.0.0

network 172.16.0.0

undo summary

测试:

在 RTA 上用 192.168.1.1 ping 192.168.2.1:

在 RTF 上用 192.168.2.1 ping 192.168.1.1:

[RTF]ping -a 192.168.2.1 192.168.1.1	
PING 192.168.1.1: 56 data bytes, press CTRL C to break	
Reply from 192.168.1.1: bytes=56 Sequence=1 ttl=252 time=40	ms
Reply from 192.168.1.1: bytes=56 Sequence=2 ttl=252 time=50	ms
Reply from 192.168.1.1: bytes=56 Sequence=3 ttl=252 time=60	ms
Reply from 192.168.1.1: bytes=56 Sequence=4 ttl=252 time=50	ms
Reply from 192.168.1.1: bytes=56 Sequence=5 ttl=252 time=50	ms
192.168.1.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 40/50/60 ms	
[RTF]	

在 RTC 上用 172.16.1.1 ping 172.16.2.1:

[RTC]ping -a 172.16.1.1 172.16.2.1	
PING 172.16.2.1: 56 data bytes, press CTRL C to brea	ak
Reply from 172.16.2.1: bytes=56 Sequence=1 ttl=252	time=40 ms
Reply from 172.16.2.1: bytes=56 Sequence=2 ttl=252	time=60 ms
Reply from 172.16.2.1: bytes=56 Sequence=3 ttl=252	time=40 ms
Reply from 172.16.2.1: bytes=56 Sequence=4 ttl=252	time=40 ms
Reply from 172.16.2.1: bytes=56 Sequence=5 ttl=252	time=40 ms
172.16.2.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 40/44/60 ms	
[BrrC]	

在 RTG 上用 172.16.2.1 ping 172.16.1.1:

[KIG]ping -a 1/2.10.2.1 1/2.10.1.1	
PING 172.16.1.1: 56 data bytes, press CTRL_C to break	
Reply from 172.16.1.1: bytes=56 Sequence=1 ttl=252 time=40	ms
Reply from 172.16.1.1: bytes=56 Sequence=2 ttl=252 time=50	ms
Reply from 172.16.1.1: bytes=56 Sequence=3 ttl=252 time=50	ms
Reply from 172.16.1.1: bytes=56 Sequence=4 ttl=252 time=40	ms
Reply from 172.16.1.1: bytes=56 Sequence=5 ttl=252 time=40	ms
172.16.1.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 40/44/50 ms	
[P#G]	