

《HCIP – Datacom Core 实验手册》目录

01、配置OSPF多区域实验组网	004
02、OSPF 高级配置实验组网	010
03、 配置 VRRP 实验组网	016
04、配置静默接口实验组网	020
05、配置通过 filter-policy 控制路由实验组网	023
06、配置协议优先级实验组网(一)	027
07、配置协议优先级实验组网(二)	031
08、 配置 IS-IS 单区域实验组网	110
09、 配置 IS-IS 多区域实验组网	112
10、配置 IS-IS 路由验证及聚合实验组网	116
11、配置 IS-IS 路由渗透实验组网	121
12、配置 RIPng 实验组网	126
13、配置 OSPFv3 实验组网	129
14、 配置 IPv6 各类地址实验组网	132
15、配置 IBGP 与 EBGP 会话实验组网	035

-、配置 OSPF 多区域实验组网

二、实验目的:

通过 OSPF 多区域和双向重发布的配置, 令 Client A 能够与 Client B 正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

interface Loopback0 #创建环回接口 0

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1, 并指定其路

由器 ID

area 1 #创建 OSPF 区域 1

network 10.1.1.0 0.0.0.255 #通告其直连网段 network 192.168.1.0 0.0.0.255 #通告其直连网段

RTB:

system-view sysname RTB interface G0/0/0 ip address 20.1.1.1 24 interface G0/0/1 ip address 10.1.1.2 24 interface Loopback0 ip address 2.2.2.2 32

东方瑞通 图 273

ospf 1 router-id 2.2.2.2

area 1

network 10.1.1.0 0.0.0.255

area 0

network 20.1.1.0 0.0.0.255

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

network 30.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

ospf 1 router-id 4.4.4.4

area 0

network 30.1.1.0 0.0.0.255

area 2

network 40.1.1.0 0.0.0.255

RTE:

system-view sysname RTE interface G0/0/0 ip address 50.1.1.1 24 interface G0/0/1 ip address 40.1.1.2 24 interface Loopback0 ip address 5.5.5 32 ospf 1 router-id 5.5.5.5

import-route rip 1 #将 RIP1 的路由条目重发布进

OSPF1 的进程中

area 2

network 40.1.1.0 0.0.0.255

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 50.0.0.0 #通告其直连的网段

undo summary #关闭自动汇总

import-route ospf 1 #将 OSPF1 的路由条目重发布进 RIP1

的进程中

RTF:

system-view sysname RTF interface G0/0/0 ip address 172.16.1.1 24 interface G0/0/1

ip address 50.1.1.2 24

rip 1

version 2

network 50.0.0.0

network 172.16.0.0

undo summary

二、OSPF 高级配置实验组网

二、实验目的:

通过 OSPF 多区域、虚链路以及双向重发布的配置, 令全网全通

三、实验步骤

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 192.168.1.0 #通告其直连的网段

东方瑞通 终月日 undo summary #关闭自动汇总 RTB: system-view sysname RTB interface G0/0/0 ip address 10.1.1.1 24 interface G0/0/1 ip address 192.168.1.2 24 interface Loopback0 ip address 2.2.2.2 32 ospf 1 router-id 2.2.2.2 #进入 OSPF 进程 1,并指定其路 由器 ID #将 RIP1 的路由条目重发布进 import-route rip 1 OSPF1 的进程中 area 1 #创建 OSPF 区域 1 network 10.1.1.0 0.0.0.255 #通告其直连网段 rip 1 version 2 network 192.168.1.0 undo summary import-route ospf 1 #将 OSPF1 的路由条目重发布进 RIP1 的进程中

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

area 1

network 10.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

ospf 1 router-id 4.4.4.4

area 0

network 20.1.1.0 0.0.0.255

area 2

network 30.1.1.0 0.0.0.255

vlink-peer 5.5.5.5 #与对端设备 5.5.5.5 在区域 2 中配置虚

链路

RTE:

system-view sysname RTE

syshame me

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface Loopback0

ip address 5.5.5.5 32

ospf 1 router-id 5.5.5.5

area 2

东方瑞通 图 23

network 30.1.1.0 0.0.0.255

vlink-peer 4.4.4.4

area 3

network 40.1.1.0 0.0.0.255

RTF:

system-view

sysname RTF

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface Loopback0

ip address 6.6.6.6 32

ospf 1 router-id 6.6.6.6

import-route rip 1

area 3

network 40.1.1.0 0.0.0.255

rip 1

version 2

network 172.16.0.0

undo summary

import-route ospf 1

RTG:

system-view

sysname RTG

interface G0/0/1

ip address 172.16.1.2 24

rip 1

version 2

network 172.16.0.0

undo summary

三、配置 VRRP 实验组网

一、实验拓扑:

二、实验目的:

令 Client A 访问 HTTP Server, 默认从 RTB 到达, 之后 down 掉 RTB 的 G0/0/0 接口, 使 RTC 自动接替转发工作, 并且在 RTB 的 E0/0/0 接口正常工作之后从 RTC 抢夺转发权, 同时 RTB、 RTC 都实现端口跟踪

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

14 https://huawei.easthome.com/

东方瑞通 图 23

interface G0/0/2 #进入相应接口

ip address 172.16.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #指定使用版本 2

network 172.16.0.0 #通告其直连的网段

network 10.0.0.0 #通告其直连的网段

network 20.0.0.0 #通告其直连的网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.2 24

interface G0/0/1

ip address 192.168.1.1 24

vrrp vrid 47 virtual-ip 192.168.1.254 #创建 VRRP 组,

指定组号与虚拟 IP 地址

vrrp vrid 47 priority 200 #配置当前路由器的 VRRP 优 先级

vrrp vrid 47 track interface G0/0/0 reduced 60 #配置 VRRP 端口跟踪,并指定在被跟踪的接口失效时,令当前

15 https://huawei.easthome.com/

VRRP 路由器的优先级降低 60

rip 1

version 2

network 192.168.1.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 192.168.1.2 24

vrrp vrid 47 virtual-ip 192.168.1.254

vrrp vrid 47 priority 150

vrrp vrid 47 track interface G0/0/1 reduced 60

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 192.168.1.0

network 10.0.0.0

undo summary

四、配置静默接口实验组网

一、实验拓扑:

二、实验目的:

4 台路由器运行 RIPv2,通过将 RTA 的 G0/0/2 配置为静默接口,令 RTA 不再向 RTD 通告 RIP 路由信息,但从 RTD 接收路由信息

三、实验步骤:

RTA:

东方瑞通 图 23

- system-view #进入系统视图模式
- sysname RTA #给设备命名
- interface G0/0/0 #进入相应接口
- ip address 10.1.1.1 24 #配置 IP 地址及子网掩码
- interface G0/0/1 #进入相应接口
- ip address 20.1.1.1 24 #配置 IP 地址及子网掩码
- interface G0/0/2 #进入相应接口
- ip address 30.1.1.1 24 #配置 IP 地址及子网掩码
- rip 1 #进入 RIP 进程 1
- version 2 #配置使用版本 2
- network 10.0.0.0 #通告其直连网段
- network 20.0.0.0 #通告其直连网段
- network 30.0.0.0 **#通告其直连网段**
- silent-interface G0/0/0 #将 G0/0/0 配置为静默接口
- undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 10.1.1.2 24

rip 1

version 2

network 10.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

rip 1

version 2

network 20.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

undo summary

五、配置通过 filter-policy 控制路由实

验组网 -、实验拓扑: RTB G0/0/0 10.1.1.0/24 G0/0/0 G0/0/1 G0/0/2 RTA 20.1.1.0/24 30.1.1.0/24 G0/0/0 G0/0/0 RTC RTD

二、实验目的:

4 台路由器运行 OSPF,通过在 RTD 上配置 filter-policy,令 其过滤掉 RTA 通告过来的路由中的网络 10.1.1.0/24

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/2 #进入相应接口

ip address 30.1.1.1 24 #配置 IP 地址及子网掩码

interface Loopback0 #创建环回接口 0

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ospf 1 router-id 1.1.1.1 #进入 OSPF 进程 1,并指定其路 由器 ID

area 0 #创建 OSPF 区域	1
network 10.1.1.0 0.0.0.255	#通告其直连网段
network 20.1.1.0 0.0.0.255	#通告其直连网段
network 30.1.1.0 0.0.0.255	#通告其直连网段

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 10.1.1.2 24

interface Loopback0

ip address 2.2.2.2 32

ospf 1 router-id 2.2.2.2

area 0

network 10.1.1.0 0.0.0.255

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

interface Loopback0

ip address 3.3.3.3 32

ospf 1 router-id 3.3.3.3

area 0

network 20.1.1.0 0.0.0.255

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

interface Loopback0

ip address 4.4.4.4 32

acl 2001 #配置基本 ACL

rule deny source 10.1.1.0 0.0.0.255 #拒绝来自

10.1.1.0/24 的路由条目

rule permit source any #允许来自其它任意网段的路由条

目

ospf 1 router-id 4.4.4.4

filter-policy 2001 import #使用过滤策略调用 ACL

2001, 并应用在入方向上

area 0

network 30.1.1.0 0.0.0.255

六、配置协议优先级实验组网 (一)

一、实验拓扑:

二、实验目的:

5 台路由器运行 RIPv2,通过更改协议优先级,令 RTC 学到的 所有路由条目的协议优先级值均变为 98

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

东方瑞通 图学习

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 10.0.0.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

undo summary

preference 98

#配置协议优先级为 98

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

network 40.0.0.0

undo summary

RTE:

system-view

sysname RTE

interface G0/0/1

ip address 40.1.1.2 24

rip 1

version 2

network 40.0.0.0

undo summary

七、配置协议优先级实验组网(二)

一、实验拓扑:

二、实验目的:

5 台路由器运行 RIPv2,通过更改协议优先级,令 RTC 从 RTD 学到的 RIP 的路由条目的协议优先级值变为 98,而从 RTB 学 到的 RIP 的路由条目的协议优先级值保持不变

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

rip 1 #进入 RIP 进程 1

version 2 #配置使用版本 2

network 10.0.0.0 #通告其直连网段

undo summary #关闭自动汇总

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

rip 1

version 2

network 10.0.0.0

network 20.0.0.0

undo summary

RTC:

system-view

sysname RTC

interface G0/0/0

RTD: system-view sysname RTD interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

rip 1

version 2

network 30.0.0.0

network 40.0.0.0

undo summary

RTE:

system-view

sysname RTE

interface G0/0/1

ip address 40.1.1.2 24

rip 1

version 2

network 40.0.0.0

undo summary

八、配置 IS-IS 单区域实验组网

通过 IS-IS 单区域的配置, 令 RTA 与 RTC 可相互访问

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

isis 1 #开启 IS-IS 路由功能

is-level level-1 #配置 IS-IS 路由器类型为层 1 路由

network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/1

ip address 20.1.1.2 24

isis enable 1

isis 1

is-level level-1

network-entity 01.0030.0300.3003.00

九、配置 IS-IS 多区域实验组网

二、实验目的:

通过 IS-IS 多区域的配置, 令全网全通, 并令 RTA 到达 RTD 的 200.1.1.0/24 网络优选经过 RTB

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

isis cost 10 #配置 IS-IS 接口的链路开销值

34 https://huawei.easthome.com/

东方瑞通 图 23

interface G0/0/1 #进入相应的接口 ip address 20.1.1.1 24 #配置 IP 地址及子网掩码 isis enable 1 #在指定接口上启用 IS-IS isis cost 20 #配置 IS-IS 接口的链路开销值 isis 1 #开启 IS-IS 路由功能 is-level level-1 #配置 IS-IS 路由器类型为层 1 路由 network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

isis enable 1

interface G0/0/1

ip address 40.1.1.1 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.2 24

isis enable 1

interface G0/0/1

ip address 30.1.1.2 24

isis enable 1

interface Loopback0

ip address 200.1.1.1 24

isis enable 1

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

测试:

在 RTA 上 ping RTD 的 200.1.1.1:

[RTA]ping 200.1.1.1 PING 200.1.1.1: 56 data bytes, press CTRL_C to break Reply from 200.1.1.1: bytes=56 Sequence=1 ttl=254 time=30 ms Reply from 200.1.1.1: bytes=56 Sequence=2 ttl=254 time=30 ms Reply from 200.1.1.1: bytes=56 Sequence=3 ttl=254 time=30 ms Reply from 200.1.1.1: bytes=56 Sequence=4 ttl=254 time=20 ms Reply from 200.1.1.1: bytes=56 Sequence=5 ttl=254 time=30 ms --- 200.1.1.1 ping statistics ---5 packet(s) transmitted 5 packet(s) transmitted 0.00% packet loss round-trip min/avg/max = 20/28/30 ms

在 RTA 上检测到达网络 200.1.1.1 所使用的路径:

[RTA]tracert 200.1.1.1
traceroute to 200.1.1.1(200.1.1.1), max hops: 30 ,packet length: 40,press CTRL
_C to break
1 10.1.1.2 20 ms 20 ms 20 ms
2 30.1.1.2 30 ms 10 ms 20 ms
[RTA]

十、配置 IS-IS 路由验证及聚合实验组

XX

二、实验目的:

在 4 台路由器上配置认证,同时在 RTC 上配置路由聚合,令 RTD 只学习聚合后的路由 192.168.0.0/16

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

38 https://huawei.easthome.com/

isis enable 1 #在指定接口上启用 IS-IS isis authentication-mode md5 cipher *huawei* #配置邻 居关系验证方式及验证密码 interface Loopback0 #创建并进入环回接口 0 ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 #在指定接口上启用 IS-IS isis enable 1 interface Loopback1 #创建并进入环回接口1 ip address 192.168.2.1 24 #配置 IP 地址及子网掩码 #在指定接口上启用 IS-IS isis enable 1 interface Loopback2 #创建并进入环回接口 2 ip address 192.168.3.1 24 #配置 IP 地址及子网掩码 #在指定接口上启用 IS-IS isis enable 1 #开启 IS-IS 路由功能 isis 1 is-level level-1 #配置 IS-IS 路由器类型为层 1 路由 network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称 area-authentication-mode md5 cipher *atnet* #配置区

域验证方式及验证密码

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

```
is-level level-1
```

network-entity 01.0020.0200.2002.00

area-authentication-mode md5 cipher atnet

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 10.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

interface G0/0/1

ip address 20.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher *huawei*

interface G0/0/2

ip address 30.1.1.1 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

area-authentication-mode md5 cipher *atnet*

domain-authentication-mode md5 cipher hcip #配置路

由域验证方式及验证密码

summary 192.168.0.0 255.255.0.0 level-2 #配置仅对引入

```
到层 2 的路由进行聚合
```

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 30.1.1.2 24

isis enable 1

isis authentication-mode md5 cipher huawei

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

domain-authentication-mode md5 cipher hcip

41 https://huawei.easthome.com/

测试:

查看 RTD 的 IS-IS 路由表,发现只有聚合路由条目:

	Route	informat.	ion for ISIS(1)		
	ISIS(1)	Level-2	Forwarding Tak	ole	
IPV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
192.168.0.0/16	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
10.1.1.0/24	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
20.1.1.0/24	20	NULL	GE0/0/0	30.1.1.1	A/-/-/-
30.1.1.0/24	10	NULL	GE0/0/0	Direct	D/-/L/-
Flags: D-Direct	, A-Added t	O URT, L	-Advertised in	LSPs, S-IGP S	Shortcut,

二、实验目的:

配置 RTB 与 RTC, 令其将从层 2 学习到的路由条目渗透给层 1 的路由器

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应的接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

interface G0/0/1 #进入相应的接口

东方瑞通 20

ip address 20.1.1.1 24 #配置 IP 地址及子网掩码

isis enable 1 #在指定接口上启用 IS-IS

isis 1 #开启 IS-IS 路由功能

is-level level-1 #配置 IS-IS 路由器类型为层 1 路由

network-entity 01.0010.0100.1001.00 #配置 IS-IS 的网 络实体名称

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 30.1.1.1 24

isis enable 1

interface G0/0/1

ip address 10.1.1.2 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0020.0200.2002.00

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 20.1.1.2 24

isis enable 1

interface G0/0/1

ip address 40.1.1.1 24

isis enable 1

isis 1

is-level level-1-2

network-entity 01.0030.0300.3003.00

RTD:

system-view sysname RTD interface G0/0/0 ip address 40.1.1.2 24 isis enable 1 interface G0/0/1 ip address 30.1.1.2 24 isis enable 1 interface Loopback0 ip address 200.1.1.1 24

isis enable 1

isis 1

is-level level-2

network-entity 02.0040.0400.4004.00

测试:

完成上述配置后,在 RTA 上 ping RTD 的 200.1.1.1:

[RTA]ping 200.1.1.1
PING 200.1.1.1: 56 data bytes, press CTRL C to break
Reply from 200.1.1.1: bytes=56 Sequence=1 ttl=254 time=20 ms
Reply from 200.1.1.1: bytes=56 Sequence=2 ttl=254 time=40 ms
Reply from 200.1.1.1: bytes=56 Sequence=3 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=4 ttl=254 time=30 ms
Reply from 200.1.1.1: bytes=56 Sequence=5 ttl=254 time=30 ms
200.1.1.1 ping statistics 5 packet(s) transmitted 5 packet(s) received 0.00% packet loss round-trip min/avg/max = 20/30/40 ms

[RTA]

再在 RTA 上查看 IS-IS 的路由表:

[RTA]display is	sis route				
	Rou	te informat:	ion for ISIS(1	-)	
	ISIS	(1) Level-1	Forwarding Ta	able	
IPV4 Destinatio	on IntCost	ExtCost	ExitInterface	e NextHop	Flags
0.0.0.0/0	10	NULL	GE0/0/1 GE0/0/0	20.1.1.2 10.1.1.2	A/-/-/-
10.1.1.0/24	10	NULL	GE0/0/0	Direct	D/-/L/-
20.1.1.0/24	10	NULL	GE0/0/1	Direct	D/-/L/-
30.1.1.0/24	20	NULL	GE0/0/0	10.1.1.2	A/-/-/-
40.1.1.0/24	20	NULL	GE0/0/1	20.1.1.2	A/-/-/-
Flags: D-I	Direct, A-Adde	d to URT, L	-Advertised in	LSPs, S-IGP S	Shortcut,
		U-Up/Down	n Bit Set		
[RTA]					

发现 RTA 的 IS-IS 路由表中并没有关于 200.1.1.0 网络的路由

东方瑞通 图学习

条目

此时,需要在 RTB 及 RTC 上做如下配置:

RTB:

isis 1

import-route isis level-2 into level-1

RTC:

isis 1

import-route isis level-2 into level-1

再次查看 RTA 的	的 IS-IS 路由表:
------------	--------------

	ISIS(1)	Level-1	Forwarding Tab	le 	
IPV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
0.0.0.0/0	10	NULL	GE0/0/1	20.1.1.2	A/-/-/-
			GE0/0/0	10.1.1.2	
10.1.1.0/24	10	NULL	GE0/0/0	Direct	D/-/L/-
20.1.1.0/24	10	NULL	GE0/0/1	Direct	D/-/L/-
30.1.1.0/24	20	NULL	GE0/0/0	10.1.1.2	A/-/-/-
40.1.1.0/24	20	NULL	GE0/0/1	20.1.1.2	A/-/-/-
200.1.1.0/24	20	NULL	GE0/0/0	10.1.1.2	A/-/-/U
			CE0/0/1	20 1 1 2	

十二、配置 RIPng 实验组网

一、实验拓扑:

二、实验目的:

通过 RIPng 的配置, 令 RTA 可以学习到 RTC 的路由条目,并与 之通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

ipv6 #开启设备的 IPv6 功能

ripng #开启并进入 RIPng 进程

interface G0/0/0 #进入相应接口

ipv6 enable #在接口下开启 IPv6 功能

ipv6 address FE80::1 link-local #配置该接口的链路本地 地址

ipv6 address 1::1/64 #配置该接口的通讯地址

ripng 1 enable #在该接口上开启 RIPng 进程

RTB:

system-view

sysname RTB

ipv6

ripng

interface G0/0/1

ipv6 enable

ipv6 address FE80::2 link-local

ipv6 address 2::2/64

ripng 1 enable

interface G0/0/0

ipv6 enable

ipv6 address FE80::3 link-local

ipv6 address 3::3/64

ripng 1 enable

RTC:

system-view

sysname RTC

ipv6

ripng

interface G0/0/1

ipv6 enable

ipv6 address FE80::4 link-local

ipv6 address 4::4/64

ripng 1 enable

十三、配置 OSPFv3 实验组网

二、实验目的:

通过 OSPFv3 的配置, 令 RTA 可以学习到 RTC 的路由条目,并 与之通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface Loopback0 #创建并进入环回接口

ip address 1.1.1.1 32 #配置 IP 地址及子网掩码

ipv6 #开启设备的 IPv6 功能

ospfv3 #开启并进入 OSPFv3 进程

router-id 1.1.1.1 #配置 OSPF 路由器 ID

interface G0/0/0 #进入相应接口

ipv6 enable #在接口下开启 IPv6 功能

ipv6 address FE80::1 link-local

#配置该接口的链路本地

地址

ipv6 address 1::1/64 #配置该接口的通讯地址

ospfv3 1 area 0.0.0.0 #在该接口上开启 OSPFv3 进程,并

指定其所属区域

RTB:

system-view

sysname RTB

interface Loopback0

ip address 2.2.2.2 32

ipv6

ospfv3

router-id 2.2.2.2

interface G0/0/1

ipv6 enable

ipv6 address FE80::2 link-local

ipv6 address 2::2/64

ospfv3 1 area 0.0.0.0

interface G0/0/0

ipv6 enable

ipv6 address FE80::3 link-local

ipv6 address 3::3/64

ospfv3 1 area 0.0.0.0

RTC:

system-view

sysname RTC

interface Loopback0

ip address 3.3.3.3 32

ipv6

ospfv3

router-id 3.3.3.3

interface G0/0/1

ipv6 enable

ipv6 address FE80::4 link-local

ipv6 address 4::4/64

ospfv3 1 area 0.0.0.0

十四、配置 IPv6 各类地址实验组网

、实验拓扑:
 RTB
 元状态配置
 G0/0/0
 2001:DB8:12::1/64
 G0/0/0
 RTA
 G0/0/1
 2001:DB8:13::1/64

二、实验目的:

RTA 的 G0/0/0 与 G0/0/1 接口采用手工方式配置 IPv6 地址; RTB 的 G0/0/0 接口通过无状态地址自动配置的方式获取 IPv6 地址; RTC 的 G0/0/0 接口通过 DHCPv6 的方式获取 IPv6 地址

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

ipv6 #开启设备的 IPv6 功能

Designer : Yiqian Hu

54 https://huawei.easthome.com/

东方瑞通 图 23

dhcp enable #开启 DHCP 功能 dhcpv6 pool easthome #创建 DHCPv6 地址池并命名 address prefix 2001:DB8:13::/64 #指定分配的网段及掩码 excluded-address 2001:DB8:13::1 #排除不分配的地址 interface G0/0/0 #进入相应的接口 ipv6 enable #在接口下开启 IPv6 功能 ipv6 address auto link-local #令接口自动生成链路本地 地址 ipv6 address 2001:DB8:12::1 64 / #配置该接口的通讯地址 undo ipv6 nd ra halt #开启发布 RA 报文的功能 interface G0/0/1 ipv6 enable ipv6 address auto link-local ipv6 address 2001:DB8:13::1 64 dhcpv6 server easthome RTB: system-view sysname RTB ipv6 interface G0/0/0

ipv6 enable

ipv6 address auto link-local

ipv6 address auto global

#令该接口通过无状态地址自动

配置的方式获取 IPv6 地址

RTC:

system-view

sysname RTC

ipv6

dhcp enable

interface G0/0/0

ipv6 enable

ipv6 address auto link-local

ipv6 address auto dhcp #令该接口通过 DHCPv6 的方式获

取 IPv6 地址

测试:

在 RTB 上查看其接口的 IPv6 地址

[RTB]display ipv6 interface g0/0/0
GigabitEthernet0/0/0 current state : UP
IPv6 protocol current state : UP
IPv6 is enabled, link-local address is FE80::2E0:FCFF:FE13:36C5
Global unicast address(es):
2001:DB8:12:0:2E0:FCFF:FE13:36C5,
subnet is 2001:DB8:12::/64 [SLAAC 1970-01-01 00:05:25 2592000S]
Joined group address(es):
FF02::1:FF13:36C5
FF02::2
FF02::1
MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND retransmit interval is 1000 milliseconds
Hosts use stateless autoconfig for addresses
[RTB]

再在 RTB 上查看其接口 G0/0/0 的 MAC 地址,确认其 IPv6 地

址是使用其自身的接口 MAC 地址自动生成的

[RTB]display interface g0/0/0			
GigabitEthernet0/0/0 current :	state : UP		
Line protocol current state :	DOWN		
Description:HUAWEI, AR Series	GigabitEthernet0/	0/0 Interface	
Route Port, The Maximum Transm:	it Unit is 1500		
Internet protocol processing	disabled		
IP Sending Frames' Format is 1	PKTFMT ETHNT 2, Har	dware address is	00e0-fc13-36c5
Last physical up time : 202	L-06-10 12:14:25 UT	C-08:00	
Last physical down time : 202	L-06-10 12:14:16 UT	C-08:00	
Current system time: 2021-06-2	L0 12:25:21-08:00		
Port Mode: FORCE COPPER			
Speed : 1000, Loopback: NONE			
Duplex: FULL, Negotiation: El	NABLE		
Mdi : AUTO			
Last 300 seconds input rate 0	bits/sec, 0 packet	s/sec	
Last 300 seconds output rate 0) bits/sec, 0 packe	ets/sec	
Input peak rate 176 bits/sec,1	Record time: 2021-0	6-10 12:18:28	
Output peak rate 232 bits/sec,	Record time: 2021-	06-10 12:19:38	
Taput, 9 packata 916 butas			
Unicast:	Multicast	0	
Broadcast.	Tumbo.	0	
Discord.	Total Error.	0	
Discald: 0	, IOLAL EITOI:	0	
CRC: 0	Giants:	0	
More			

在 RTC 上查看其接口的 IPv6 地址

[RTC]display dhcpv6 client
GigabitEthernet0/0/0 is in stateful DHCPv6 client mode.
State is BOUND.
Preferred server DUID : 0003000100E0FC1B6A14
Reachable via address : FE80::2E0:FCFF:FE1B:6A15
IA NA IA ID 0x00000031 T1 43200 T2 69120
Obtained : 2021-06-10 12:20:02
Renews : 2021-06-11 00:20:02
Rebinds : 2021-06-11 07:32:02
Address : 2001:DB8:13::2
Lifetime valid 172800 seconds, preferred 86400 seconds
Expires at 2021-06-12 12:20:02(172265 seconds left)

[RTC]

十五、配置 IBGP 与 EBGP 会话实验组

二、实验目的:

通过 IBGP 与 EBGP 之间会话的配置, 令 2 台客户端能够正常通讯

三、实验步骤:

RTA:

system-view #进入系统视图模式

sysname RTA #给设备命名

interface G0/0/0 #进入相应接口

ip address 10.1.1.1 24 #配置 IP 地址及子网掩码

interface G0/0/1 #进入相应接口

Designer : Yiqian Hu

59 https://huawei.easthome.com/

东方瑞通 图 23

ip address 192.168.1.1 24 #配置 IP 地址及子网掩码 interface LoopBack0 #进入相应接口 ip address 1.1.1.1 32 #配置 IP 地址及子网掩码 bgp 65001 #开启 BGP 路由功能,并配置其 AS 号 router-id 1.1.1.1 #配置设备的 BGP 路由器 ID peer 2.2.2.2 as-number 1 #指定对等体的路由器 ID, 以及 远程自治系统号码 peer 2.2.2.2 ebgp-max-hop 2 #指定自身与对等体为 EBGP 关系,并指出到对等体所跨越的跳数 peer 2.2.2.2 connect-interface LoopBack0 #指定自身 与对等体之间用哪个接口来承载更新 network 192.168.1.0 #通告自己的网段及子网掩码 undo summary automatic **#关闭自动汇**总 ip route-static 2.2.2.2 255.255.255.255 10.1.1.2 #配置静 态路由 (对等体路由器 ID+对等体路由器 ID 的子网掩码+下一 跳接口地址)

RTB:

system-view

sysname RTB

interface G0/0/0

ip address 20.1.1.1 24

interface G0/0/1

ip address 10.1.1.2 24

interface LoopBack0

ip address 2.2.2.2 32

bgp 1

router-id 2.2.2.2

peer 1.1.1.1 as-number 65001

peer 1.1.1.1 ebgp-max-hop 2

peer 1.1.1.1 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 10.1.1.0 24

network 20.1.1.0 24

network 30.1.1.0 24

peer 3.3.3.3 next-hop-local

#告知对等体,自己为其访问

EBGP 的下一跳路由器

peer 4.4.4.4 next-hop-local

rip 1

version 2

network 2.0.0.0

network 20.0.0.0

undo summary

ip route-static 1.1.1.1 255.255.255.255 10.1.1.1

RTC:

system-view

sysname RTC

interface G0/0/0

ip address 30.1.1.1 24

interface G0/0/1

ip address 20.1.1.2 24

interface LoopBack0

ip address 3.3.3.3 32

bgp 1

router-id 3.3.3.3

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 4.4.4.4 as-number 1

peer 4.4.4.4 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

rip 1

version 2

network 20.0.0.0

network 30.0.0.0

network 3.0.0.0

undo summary

RTD:

system-view

sysname RTD

interface G0/0/0

ip address 40.1.1.1 24

interface G0/0/1

ip address 30.1.1.2 24

interface LoopBack0

ip address 4.4.4.4 32

bgp 1

router-id 4.4.4.4

peer 2.2.2.2 as-number 1

peer 2.2.2.2 connect-interface LoopBack0

peer 3.3.3.3 as-number 1

peer 3.3.3.3 connect-interface LoopBack0

peer 5.5.5.5 as-number 7

peer 5.5.5.5 ebgp-max-hop 2

peer 5.5.5.5 connect-interface LoopBack0

network 20.1.1.0 24

network 30.1.1.0 24

network 40.1.1.0 24

peer 2.2.2.2 next-hop-local

peer 3.3.3.3 next-hop-local

rip 1

version 2

network 4.0.0.0

network 30.0.0.0

undo summary

ip route-static 5.5.5.5 255.255.255.255 40.1.1.2

RTE:

system-view

sysname RTE

interface G0/0/0

ip address 172.16.1.1 24

interface G0/0/1

ip address 40.1.1.2 24

interface LoopBack0

ip address 5.5.5.5 32

bgp 7

router-id 5.5.5.5

peer 4.4.4.4 as-number 1

peer 4.4.4.4 ebgp-max-hop 2

peer 4.4.4.4 connect-interface LoopBack0

network 172.16.1.0 24

ip route-static 4.4.4.4 255.255.255.255 40.1.1.1

测试:

分别在 RTA 与 RTE 上查看路由表:

[RTA]display ip rou Route Flags: R - re	ting-tab lay, D -	le down	load to	fib		
Routing Tables: Pub Destinatio	lic ns : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
1.1.1.1/32 2.2.2.2/32	Direct Static	0 60	0 0	D RD	127.0.0.1 10.1.1.2	LoopBack0 GigabitEthernet
10.1.1.0/24	Direct	0		D	10.1.1.1	GigabitEthernet
10.1.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
10.1.1.255/32 0/0/0	Direct	0	0	D	127.0.0.1	GigabitEthernet
20.1.1.0/24 0/0/0	EBGP	255		RD	2.2.2.2	GigabitEthernet
30.1.1.0/24 0/0/0	EBGP	255		RD	2.2.2.2	GigabitEthernet
40.1.1.0/24 0/0/0	EBGP	255	0	RD	2.2.2.2	GigabitEthernet
127.0.0.0/8 127.0.0.1/32	Direct Direct	0	0	D D	127.0.0.1 127.0.0.1	InLoopBack0 InLoopBack0
127.255.255.255/32 172.16.1.0/24	Direct EBGP	0 255	0 0	D RD	127.0.0.1 2.2.2.2	InLoopBack0 GigabitEthernet
192.168.1.0/24 0/0/1	Direct	0	0	D	192.168.1.1	GigabitEthernet
192.168.1.1/32 0/0/1	Direct	0	0	D	127.0.0.1	GigabitEthernet
192.168.1.255/32 0/0/1	Direct	0		D	127.0.0.1	GigabitEthernet
255.255.255.255/32	Direct		0	D	127.0.0.1	InLoopBack0

Routing Tables . Pub	lic					
Destinatio	ons : 16		Routes	: 16		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
4.4.4.4/32	Static	60	0	RD	40.1.1.1	GigabitEthernet
0/0/1						
5.5.5.5/32	Direct	0	0	D	127.0.0.1	LoopBack0
10.1.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1	PDGD	OFF		DD		
20.1.1.0/24	EBGP	255		RD	4.4.4.4	GigabitEthernet
30 1 1 0/24	FRCD	255	0	DD	1 1 1 1	CicchitEthernet
0/0/1	EDGP	200		KD	4.4.4.4	GigabitEthernet
40 1 1 0/24	Direct	0	0	D	40 1 1 2	GigabitEthernet
0/0/1	DIICOL				10.1.1.2	ergabrenernee
40.1.1.2/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1						
40.1.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/1						
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct	0	0	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct			D	127.0.0.1	InLoopBack0
172.16.1.0/24	Direct	0	0	D	172.16.1.1	GigabitEthernet
0/0/0						
172.16.1.1/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
172.16.1.255/32	Direct	0	0	D	127.0.0.1	GigabitEthernet
0/0/0						
192.168.1.0/24	EBGP	255	0	RD	4.4.4.4	GigabitEthernet
0/0/1						
255.255.255.255/32	Direct		0	D	127.0.0.1	InLoopBack0